Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jumping gene could provide non-viral alternative for gene therapy

27.09.2006
A jumping gene first identified in a cabbage-eating moth may one day provide a safer, target-specific alternative to viruses for gene therapy, researchers say.

They compared the ability of the four best-characterized jumping genes, or transposons, to insert themselves into a cell's DNA and produce a desired change, such as making the cell resistant to damage from radiation therapy.

They found the piggyBac transposon was five to 10 times better than the other circular pieces of DNA at making a home and a difference in several mammalian cell lines, including three human ones.

"If we want to add a therapeutic gene, we can put it within the transposon and use it to deliver the gene into the cell," says Dr. Joseph M. Kaminski, radiation oncologist at the Medical College of Georgia Cancer Center and a corresponding author on research published the week of Sept. 25 in the online Proceedings of the National Academy of Sciences Early Edition. "You can use these wherever retroviruses have been used."

... more about:
»Beauty »DNA »piggyBac »retroviruses

In addition to piggyBac, researchers looked at what was believed to be the most efficient transposon in mammalian cells, hyperactive Sleeping Beauty, first found "asleep" in fish. They also looked at Tol2, another fish transposon, and Mos1, found in insects.

The piggyBac transposon, which has close relatives in the human genome, is widely used to genetically modify insects. Sleeping Beauty has been used to correct hereditary diseases, including hemophilia, in a mouse model.

For this study, researchers used transposons to deliver an antibiotic-resistant gene. "It's a way of screening and seeing which transposon is better," Dr. Kaminski says. They found that while piggyBac might not work as efficiently as a virus, it put Sleeping Beauty to shame when it came to making cells antibiotic-resistant.

"Sleeping Beauty has captured the field as far as transposons to be used in mammals," says Dr. Stefan Moisyadi, molecular biologist, at the University of Hawaii and a corresponding author. "But by comparing different transposons, we showed Sleeping Beauty is far inferior to piggyBac."

Scientists have used viruses as a gene delivery mechanism for more than 20 years because of their adeptness at getting inside cells and inserting themselves in DNA. But efficiency comes at a price. Gene therapy trials have been halted because of major complications, including deaths. As examples, one patient died because of his immune response to an adenovirus and three children in another study developed leukemia because the virus inserted itself upstream of a cancer-causing gene.

"With viruses, you don't have control," says Dr. Kaminski. "People have tried to modify viruses for site-specific integration and have not been very successful. Once they get into the cell, they can insert wherever they want."

Dr. Kaminski's previous work, published in 2002 in The FASEB Journal, hypothesized that the integration site for transposons can be selected. "Typically, viruses and transposons will integrate anywhere along the genome," he says. "If they integrate anywhere, it can obviously cause harm. If we can target the integration, be able to insert the gene at a safe spot in the genome, that would be beneficial." He confirmed that targeting integration is possible in a paper he co-authored in 2005 also in The FASEB Journal. "We can do it in insects," says Dr. Moisyadi. "I think it's a short step to take it to a targeting mechanism we can use in humans."

Another clear benefit is that transposons are cheaper to produce and probably safer than viruses. For example, retroviruses use RNA to make DNA, an error-prone process that must occur before integration, Dr. Kaminski says. Also, viruses can't carry larger genes, such as the dystrophin gene, which could help correct muscular dystrophy. On the other hand, unlike retroviruses, transposons have to be coated with lipid to slip into cells.

Although piggyBac is not as successful as the virus at integrating into DNA, "we could potentially make a hyperactive version of piggyBac, like they did for Sleeping Beauty, which might be as good or better than retroviruses," Dr. Kaminski says. "I think we'll do it or somebody will. I think it's a safer method."

"At the moment, unless something new comes out, it's the only way to go because viruses have been killing people," says Dr. Moisyadi, who has avoided viruses in his transgenesis studies.

"One of our next goals is to use transposons to deliver a radio-protective gene, called manganese superoxide dismutase, to potentially protect normal tissue from radiation damage," Dr. Kaminski says.

In cancer, he suspects gene therapy will focus on this type of modification of normal tissue for protective purposes as well as manipulating the immune response. However, it has broad applications for correcting single gene disorders, such as hemophilia, sickle cell disease and muscular dystrophy.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

Further reports about: Beauty DNA piggyBac retroviruses

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>