Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jumping gene could provide non-viral alternative for gene therapy

27.09.2006
A jumping gene first identified in a cabbage-eating moth may one day provide a safer, target-specific alternative to viruses for gene therapy, researchers say.

They compared the ability of the four best-characterized jumping genes, or transposons, to insert themselves into a cell's DNA and produce a desired change, such as making the cell resistant to damage from radiation therapy.

They found the piggyBac transposon was five to 10 times better than the other circular pieces of DNA at making a home and a difference in several mammalian cell lines, including three human ones.

"If we want to add a therapeutic gene, we can put it within the transposon and use it to deliver the gene into the cell," says Dr. Joseph M. Kaminski, radiation oncologist at the Medical College of Georgia Cancer Center and a corresponding author on research published the week of Sept. 25 in the online Proceedings of the National Academy of Sciences Early Edition. "You can use these wherever retroviruses have been used."

... more about:
»Beauty »DNA »piggyBac »retroviruses

In addition to piggyBac, researchers looked at what was believed to be the most efficient transposon in mammalian cells, hyperactive Sleeping Beauty, first found "asleep" in fish. They also looked at Tol2, another fish transposon, and Mos1, found in insects.

The piggyBac transposon, which has close relatives in the human genome, is widely used to genetically modify insects. Sleeping Beauty has been used to correct hereditary diseases, including hemophilia, in a mouse model.

For this study, researchers used transposons to deliver an antibiotic-resistant gene. "It's a way of screening and seeing which transposon is better," Dr. Kaminski says. They found that while piggyBac might not work as efficiently as a virus, it put Sleeping Beauty to shame when it came to making cells antibiotic-resistant.

"Sleeping Beauty has captured the field as far as transposons to be used in mammals," says Dr. Stefan Moisyadi, molecular biologist, at the University of Hawaii and a corresponding author. "But by comparing different transposons, we showed Sleeping Beauty is far inferior to piggyBac."

Scientists have used viruses as a gene delivery mechanism for more than 20 years because of their adeptness at getting inside cells and inserting themselves in DNA. But efficiency comes at a price. Gene therapy trials have been halted because of major complications, including deaths. As examples, one patient died because of his immune response to an adenovirus and three children in another study developed leukemia because the virus inserted itself upstream of a cancer-causing gene.

"With viruses, you don't have control," says Dr. Kaminski. "People have tried to modify viruses for site-specific integration and have not been very successful. Once they get into the cell, they can insert wherever they want."

Dr. Kaminski's previous work, published in 2002 in The FASEB Journal, hypothesized that the integration site for transposons can be selected. "Typically, viruses and transposons will integrate anywhere along the genome," he says. "If they integrate anywhere, it can obviously cause harm. If we can target the integration, be able to insert the gene at a safe spot in the genome, that would be beneficial." He confirmed that targeting integration is possible in a paper he co-authored in 2005 also in The FASEB Journal. "We can do it in insects," says Dr. Moisyadi. "I think it's a short step to take it to a targeting mechanism we can use in humans."

Another clear benefit is that transposons are cheaper to produce and probably safer than viruses. For example, retroviruses use RNA to make DNA, an error-prone process that must occur before integration, Dr. Kaminski says. Also, viruses can't carry larger genes, such as the dystrophin gene, which could help correct muscular dystrophy. On the other hand, unlike retroviruses, transposons have to be coated with lipid to slip into cells.

Although piggyBac is not as successful as the virus at integrating into DNA, "we could potentially make a hyperactive version of piggyBac, like they did for Sleeping Beauty, which might be as good or better than retroviruses," Dr. Kaminski says. "I think we'll do it or somebody will. I think it's a safer method."

"At the moment, unless something new comes out, it's the only way to go because viruses have been killing people," says Dr. Moisyadi, who has avoided viruses in his transgenesis studies.

"One of our next goals is to use transposons to deliver a radio-protective gene, called manganese superoxide dismutase, to potentially protect normal tissue from radiation damage," Dr. Kaminski says.

In cancer, he suspects gene therapy will focus on this type of modification of normal tissue for protective purposes as well as manipulating the immune response. However, it has broad applications for correcting single gene disorders, such as hemophilia, sickle cell disease and muscular dystrophy.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

Further reports about: Beauty DNA piggyBac retroviruses

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>