Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jumping gene could provide non-viral alternative for gene therapy

27.09.2006
A jumping gene first identified in a cabbage-eating moth may one day provide a safer, target-specific alternative to viruses for gene therapy, researchers say.

They compared the ability of the four best-characterized jumping genes, or transposons, to insert themselves into a cell's DNA and produce a desired change, such as making the cell resistant to damage from radiation therapy.

They found the piggyBac transposon was five to 10 times better than the other circular pieces of DNA at making a home and a difference in several mammalian cell lines, including three human ones.

"If we want to add a therapeutic gene, we can put it within the transposon and use it to deliver the gene into the cell," says Dr. Joseph M. Kaminski, radiation oncologist at the Medical College of Georgia Cancer Center and a corresponding author on research published the week of Sept. 25 in the online Proceedings of the National Academy of Sciences Early Edition. "You can use these wherever retroviruses have been used."

... more about:
»Beauty »DNA »piggyBac »retroviruses

In addition to piggyBac, researchers looked at what was believed to be the most efficient transposon in mammalian cells, hyperactive Sleeping Beauty, first found "asleep" in fish. They also looked at Tol2, another fish transposon, and Mos1, found in insects.

The piggyBac transposon, which has close relatives in the human genome, is widely used to genetically modify insects. Sleeping Beauty has been used to correct hereditary diseases, including hemophilia, in a mouse model.

For this study, researchers used transposons to deliver an antibiotic-resistant gene. "It's a way of screening and seeing which transposon is better," Dr. Kaminski says. They found that while piggyBac might not work as efficiently as a virus, it put Sleeping Beauty to shame when it came to making cells antibiotic-resistant.

"Sleeping Beauty has captured the field as far as transposons to be used in mammals," says Dr. Stefan Moisyadi, molecular biologist, at the University of Hawaii and a corresponding author. "But by comparing different transposons, we showed Sleeping Beauty is far inferior to piggyBac."

Scientists have used viruses as a gene delivery mechanism for more than 20 years because of their adeptness at getting inside cells and inserting themselves in DNA. But efficiency comes at a price. Gene therapy trials have been halted because of major complications, including deaths. As examples, one patient died because of his immune response to an adenovirus and three children in another study developed leukemia because the virus inserted itself upstream of a cancer-causing gene.

"With viruses, you don't have control," says Dr. Kaminski. "People have tried to modify viruses for site-specific integration and have not been very successful. Once they get into the cell, they can insert wherever they want."

Dr. Kaminski's previous work, published in 2002 in The FASEB Journal, hypothesized that the integration site for transposons can be selected. "Typically, viruses and transposons will integrate anywhere along the genome," he says. "If they integrate anywhere, it can obviously cause harm. If we can target the integration, be able to insert the gene at a safe spot in the genome, that would be beneficial." He confirmed that targeting integration is possible in a paper he co-authored in 2005 also in The FASEB Journal. "We can do it in insects," says Dr. Moisyadi. "I think it's a short step to take it to a targeting mechanism we can use in humans."

Another clear benefit is that transposons are cheaper to produce and probably safer than viruses. For example, retroviruses use RNA to make DNA, an error-prone process that must occur before integration, Dr. Kaminski says. Also, viruses can't carry larger genes, such as the dystrophin gene, which could help correct muscular dystrophy. On the other hand, unlike retroviruses, transposons have to be coated with lipid to slip into cells.

Although piggyBac is not as successful as the virus at integrating into DNA, "we could potentially make a hyperactive version of piggyBac, like they did for Sleeping Beauty, which might be as good or better than retroviruses," Dr. Kaminski says. "I think we'll do it or somebody will. I think it's a safer method."

"At the moment, unless something new comes out, it's the only way to go because viruses have been killing people," says Dr. Moisyadi, who has avoided viruses in his transgenesis studies.

"One of our next goals is to use transposons to deliver a radio-protective gene, called manganese superoxide dismutase, to potentially protect normal tissue from radiation damage," Dr. Kaminski says.

In cancer, he suspects gene therapy will focus on this type of modification of normal tissue for protective purposes as well as manipulating the immune response. However, it has broad applications for correcting single gene disorders, such as hemophilia, sickle cell disease and muscular dystrophy.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

Further reports about: Beauty DNA piggyBac retroviruses

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>