Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers use multiphoton microscopy to watch chromosomes in action

Feverish fruit fly larvae, warmed in a toasty lab chamber, are giving Cornell researchers a way to watch chromosomes in action and actually see how genes are expressed in living tissue.

Using multiphoton fluorescence microscopy, a technique pioneered at Cornell by physicist Watt W. Webb, researchers have for the first time been able to watch chromosomes change their form in order to activate their genes to synthesize key proteins in fruit fly cells. The advance could be a significant step toward understanding the basic processes that underlie gene expression.

The discovery was the result of cross-disciplinary collaboration between Webb and John Lis, Cornell's Barbara McClintock Professor of Molecular Biology and Genetics. Jie Yao, who recently earned his Ph.D. at Cornell, initiated and facilitated the work.

"This technology will revolutionize the way we see gene expression in organisms," said Lis. "We're watching transcription in real time in living cells."

... more about:
»HSF »Microscopy »chromosomes »multiphoton »watch

The research was described in the Aug. 31 issue of the journal Nature.

The team's experiments focused on gene regulatory mechanisms: specifically, what happens in a cell's nucleus when an external stimulus (heat) prompts specific genes to activate, and how those activated genes direct the production of proteins that protect the fly against the stress of heating.

"Whenever a cell is stressed -- bingo, it will produce proteins that will help the cell resist stress," said Webb, Cornell professor of applied physics and the S.B. Eckert Professor in Engineering. The process is triggered by a molecule called heat shock factor (HSF), which interacts with genes to cue the synthesis of new proteins. But this well-known process had never been seen in living cells.

Yao used multiphoton microscopy (MPM) to image living salivary gland tissue of Drosophila (fruit flies). Unlike other methods, which lack penetrating power and can damage the specimen, MPM delivers crisp, clear images, even in thicker tissue samples like Drosophila salivary glands.

The research was ultimately possible thanks to the unique composition of the fruit flies' polytene cells -- giant, multistranded chromosomes with hundreds of sets of the genome instead of the usual two sets in conventional cells. This enlarges the usual nuclear dimensions by about 10 times, making them large enough to image the detail.

The results were stunning. "Within two weeks we had spectacular pictures," said Lis. The images included pictures of the genes (hsp70 genes) that protect flies from the effects of extreme heat. By cranking up the heat, the researchers could activate these genes, and by using fruit flies specifically bred to carry fluorescent proteins on HSF, they could watch the transcription factors in action.

"This is the first time ever that anyone has been able to see in detail, at native genes in vivo, how a transcription factor is turned on, and how it then is activated," said Webb.

Using another method that Webb engineered at Cornell, called fluorescence recovery after photobleaching, the researchers also discovered that HSF activators bind to hsp70 genes much longer than previously thought before being replaced with new HSFs, which raises new questions about the mechanisms of gene transcription.

The technique also may offer a new tool for researchers across the biological sciences. Webb says it marks the success of an interdisciplinary trend that offers new potential for researchers in a variety of fields.

"Interaction between the physical sciences and the life sciences is very powerful," said Webb. "And it's becoming more powerful as a tool for advancing our understanding of the life sciences."

Better understanding transcription in lower organisms will help understand the processes in higher organisms, Yao added. "We hope to push the limits to human cells. That's the goal in the next 20 years."

Press Relations Office | EurekAlert!
Further information:

Further reports about: HSF Microscopy chromosomes multiphoton watch

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>