Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One protein, two channels: Scientists explain mechanism in aquaporins

26.09.2006
Using computer simulations and experimental results, researchers at the University of Illinois at Urbana-Champaign and the University of Arizona have identified a key component of the gating mechanism in aquaporins that controls both the passage of water and the conduction of ions.

Aquaporins are a class of proteins that form membrane channels in cell walls and allow for water movement between a cell and its surroundings. A number of aquaporins, including aquaporin-1, have been found to function as ion channels, as well.

"Understanding the molecular mechanism behind gating in membrane channels could lead to more effective protein engineering," said Emad Tajkhorshid, a professor of biochemistry at Illinois and a researcher at the Beckman Institute for Advanced Science and Technology.

In work funded by the National Institutes of Health, Tajkhorshid and co-workers show that the same protein can be used as a water channel or an ion channel depending on the signaling pathway activated in the cell. The scientists report their findings in the September issue of the journal Structure. Taking advantage of the known crystal structure of aquaporin-1 and the power of molecular dynamics simulations, the researchers explored the central pore as a candidate pathway for conducting ions. Gating of the central pore is controlled by cyclic guanosine monophosphate, a signaling nucleotide inside the cell, which induces a conformational change in one of the aquaporin loops (loop D).

... more about:
»Ion »Pore »Protein »Tajkhorshid »loop

"This loop is very flexible, has four positively charged arginine residues in a row, and extends into the central pore," Tajkhorshid said. "We believe the cGMP interacts with loop D, facilitating its outward motion, which triggers the opening of the gate."

The work highlights a close interaction between simulation and experiment. Based on their simulation results, the researchers designed a mutant in which two arginines in loop D were replaced by two alanines. In laboratory experiments performed at Arizona, the substitution caused an almost complete removal of ion conduction, but had no appreciable effect on water passage.

"Knowing the mechanism gives us a new handle to control the opening or closing of the central pore," Tajkhorshid said. "By modifying the pore-lining residue, or altering the length of loop D that gates the pore, we can shut down the ion conductivity completely, or engineer new aquaporins that can be opened more easily or have a higher ion conduction rate once open."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

Further reports about: Ion Pore Protein Tajkhorshid loop

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>