Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One protein, two channels: Scientists explain mechanism in aquaporins

26.09.2006
Using computer simulations and experimental results, researchers at the University of Illinois at Urbana-Champaign and the University of Arizona have identified a key component of the gating mechanism in aquaporins that controls both the passage of water and the conduction of ions.

Aquaporins are a class of proteins that form membrane channels in cell walls and allow for water movement between a cell and its surroundings. A number of aquaporins, including aquaporin-1, have been found to function as ion channels, as well.

"Understanding the molecular mechanism behind gating in membrane channels could lead to more effective protein engineering," said Emad Tajkhorshid, a professor of biochemistry at Illinois and a researcher at the Beckman Institute for Advanced Science and Technology.

In work funded by the National Institutes of Health, Tajkhorshid and co-workers show that the same protein can be used as a water channel or an ion channel depending on the signaling pathway activated in the cell. The scientists report their findings in the September issue of the journal Structure. Taking advantage of the known crystal structure of aquaporin-1 and the power of molecular dynamics simulations, the researchers explored the central pore as a candidate pathway for conducting ions. Gating of the central pore is controlled by cyclic guanosine monophosphate, a signaling nucleotide inside the cell, which induces a conformational change in one of the aquaporin loops (loop D).

... more about:
»Ion »Pore »Protein »Tajkhorshid »loop

"This loop is very flexible, has four positively charged arginine residues in a row, and extends into the central pore," Tajkhorshid said. "We believe the cGMP interacts with loop D, facilitating its outward motion, which triggers the opening of the gate."

The work highlights a close interaction between simulation and experiment. Based on their simulation results, the researchers designed a mutant in which two arginines in loop D were replaced by two alanines. In laboratory experiments performed at Arizona, the substitution caused an almost complete removal of ion conduction, but had no appreciable effect on water passage.

"Knowing the mechanism gives us a new handle to control the opening or closing of the central pore," Tajkhorshid said. "By modifying the pore-lining residue, or altering the length of loop D that gates the pore, we can shut down the ion conductivity completely, or engineer new aquaporins that can be opened more easily or have a higher ion conduction rate once open."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

Further reports about: Ion Pore Protein Tajkhorshid loop

More articles from Life Sciences:

nachricht Light-driven reaction converts carbon dioxide into fuel
23.02.2017 | Duke University

nachricht Oil and gas wastewater spills alter microbes in West Virginia waters
23.02.2017 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>