Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching DNA Repair in Real Time

26.09.2006
Direct observations of DNA are giving new insights into how genetic material is copied and repaired.

"We can monitor the process directly, and that gives us a different perspective," said Roberto Galletto, a postdoctoral scholar at UC Davis and first author on a paper published Sept. 20 on the Web site of the journal Nature.

In E. coli bacteria, molecules of an enzyme called RecA attach themselves along a DNA strand, stretching it out and forming a filament. A piece of complementary DNA lines up along side it, and pieces of DNA can be swapped in to repair gaps in the original strand. A similar protein, called Rad51, does the same job in humans.

"How RecA and Rad51 assemble into filaments determines the outcome of DNA repair, but very little is known about how assembly is controlled," said senior author Stephen Kowalczykowski, professor in the sections of Microbiology and of Molecular and Cellular Biology and director of the Center for Genetics and Development at UC Davis. Genes that control the human gene, Rad51, have been linked to increased risk of breast cancer.

... more about:
»DNA »Kowalczykowski »RAD51 »RecA

Galletto attached a short piece of DNA to a tiny latex bead and placed it in a flow chamber, held by laser beam "tweezers." Fluid flowing past made the DNA stream out like a banner. Then he nudged it into an adjacent channel containing fluorescently-tagged RecA. After short intervals of time, he moved it back to the first chamber to observe the results.

By repeatedly dipping the same piece of DNA into the fluorescent channel, the researchers could see the RecA form clusters of four to five molecules on the DNA. Once those clusters had formed, the DNA/RecA filament rapidly grew in both directions. The measurements made in those experiments will be the baseline for future studies of both RecA and Rad51, Kowalczykowski said.

The new work adapts an approach developed by Kowalczykowski and Ronald J. Baskin, professor of molecular and cellular biology, to study single enzymes at work unwinding DNA strands. That research was first published in Nature in 2001.

In addition to Galletto, Kowalczykowski and Baskin, the research team included postdoctoral scholar Ichiro Amitani. The work was funded by the National Institutes of Health and a fellowship awarded to Galletto by the Jeane B. Kempner Foundation.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

Further reports about: DNA Kowalczykowski RAD51 RecA

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>