Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The UGR patents a process to obtain a protein as a natural colorant

26.09.2006
We only have to read the labels of many commercial products to find colorants among their components.

They are natural or synthetic additives authorised by food security regulations and used to colour food and drinks in an artificial way. A research team of the Universities of Granada, Jaén and Almería have devised a process to obtain a natural colorant from the micro-algae Porphyridium cruentum.

High performance

Many marine algae are rich in proteins with fluorescent properties. They contain a kind of molecules –chromophores– which pick up and emit light. In the case of the species Porphyridium cruentum, the protein known as ficoerithrin confers the micro-algae a reddish colour. Scientists Bermejo Ruperto, of the Universidad de Jaén, José Mª Álvarez Pez, of the UGR [http://www.ugr.es], and Francisco G. Acién Fernández, Emilio Molina Grima and Mª José Ibáñez González, of the Universidad de Almería, have designed a process to obtain the B-ficoeritrina protein from this microalgae, which is characterized by its “high performance”, about 66%. According to José Mª Álvarez, researcher responsible of the group ‘Photochemistry and Photobiology’ of the Universidad de Granada, this value is “twice as much as the highest published up to now obtained with chromatographic method”. They have separated and purified amounts of this on an almost industrial preparatory scale.

... more about:
»Protein »colorant »natural

An example of the relevance of this finding is the fact that the results of the research work have been included in an article of a special issue of the prestigious Journal of Chromatography.

Protein structure

Colorants are basically used in food and agriculture, pharmaceutical and cosmetic industry to improve the aspect of the products and make them more attractive to consumers. B-ficoerithrin is “very fluorescent” and its colour “looks like strawberries milkshake’s”; therefore, according to the researcher, it could take the place of other colorants.

However, the use of a compound as a colorant must be authorized by the regulations currently in force. In this sense, scientists are dealing with the study of the spectroscopic features of B-ficoerithrin. This way they will obtain information about the possible structural changes of the protein when it is subjected to extreme conditions during the production process of foodstuffs or pharmaceutical o cosmetic formulations.

On the other hand, the researchers are going to set in motion a R&D&I project with the spin-off of Almería Bioalgal Marine, S.L., a technological innovation company that works on the treatment and commercialization of microalgae aimed at the sector of aquiculture and the preparation of functional food. In addition, among the commercialized products there are pigments produced from microalgae. Biolgal Marine is part of the business projects supported by the Department for Innovation, Science and Company through the Program Campus, managed by Invercaria.

Antonio Marín Ruiz | alfa
Further information:
http://www.ugr.es
http://prensa.ugr.es/prensa/research/index.php

Further reports about: Protein colorant natural

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>