Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New target for cancer therapy identified

25.09.2006
A new target for cancer therapy has been identified by Monash University scientists investigating the cell signalling pathways that turn on a gene involved in cancer development.

A team led by Associate Professor Jun-Ping Liu, from the Department of Immunology, has identified two proteins that are involved in stopping the gene from producing a protein called telomerase that is essential if cancer cells are to proliferate.

Telomerase plays a key role in controlling the life span of cells by modifying structures called telomeres that are found at the end of chromosomes.

Although it is involved in tumour development, telomerase is also found inmodest quantities in most cells. It is plentiful in stem cells where it keeps the telomeres long, allowing the cells to keep dividing without limit which is necessary for the repair of damaged and worn out tissues throughout the human body.

... more about:
»Associate »Liu »Telomerase »identified »tumour

However, studies have shown that telomerase also plays a key role in the formation of cancerous tumours. "It's the best indicator of cancer -- 85 per cent better than any other tumour marker," Associate Professor Liu said. "What's more, telomerase is not associated with benign tumours; it's a marker for malignant tumours only.

"If we can control the production of telomerase we can prevent the immortality of cancer cells and therefore cancer formation."

Associate Professor Liu and his colleagues have been investigating breast cancer cells to identify the molecular signalling that is required to turn on, and also inhibit, the gene that produces telomerase. They have found two proteins - Smad3 and c-Myc - that are involved in turning off telomerase production. Their findings are published in the current issue of the Journal of Biological Chemistry.

"It's significant to find inhibitors of telomerase and we have found, for the first time, the pathway that inhibits telomerase in human cells," Associate Professor Liu said.

"This reveals an important mechanism for developing anti-cancer agents that mimic these proteins and thereby inhibit the production of telomerase. "

For more information contact Associate Professor Jun-Ping Liu on +61 3 9903 0715 or Penny Fannin, Media Communications, on +61 3 9905 5828 or 0417 125 700.

Penny Fannin | EurekAlert!
Further information:
http://www.monash.edu.au

Further reports about: Associate Liu Telomerase identified tumour

More articles from Life Sciences:

nachricht Maelstroms in the heart
22.02.2018 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Decoding the structure of the huntingtin protein
22.02.2018 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Decoding the structure of the huntingtin protein

22.02.2018 | Life Sciences

Camera technology in vehicles: Low-latency image data compression

22.02.2018 | Information Technology

Minimising risks of transplants

22.02.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>