Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New target for cancer therapy identified

25.09.2006
A new target for cancer therapy has been identified by Monash University scientists investigating the cell signalling pathways that turn on a gene involved in cancer development.

A team led by Associate Professor Jun-Ping Liu, from the Department of Immunology, has identified two proteins that are involved in stopping the gene from producing a protein called telomerase that is essential if cancer cells are to proliferate.

Telomerase plays a key role in controlling the life span of cells by modifying structures called telomeres that are found at the end of chromosomes.

Although it is involved in tumour development, telomerase is also found inmodest quantities in most cells. It is plentiful in stem cells where it keeps the telomeres long, allowing the cells to keep dividing without limit which is necessary for the repair of damaged and worn out tissues throughout the human body.

... more about:
»Associate »Liu »Telomerase »identified »tumour

However, studies have shown that telomerase also plays a key role in the formation of cancerous tumours. "It's the best indicator of cancer -- 85 per cent better than any other tumour marker," Associate Professor Liu said. "What's more, telomerase is not associated with benign tumours; it's a marker for malignant tumours only.

"If we can control the production of telomerase we can prevent the immortality of cancer cells and therefore cancer formation."

Associate Professor Liu and his colleagues have been investigating breast cancer cells to identify the molecular signalling that is required to turn on, and also inhibit, the gene that produces telomerase. They have found two proteins - Smad3 and c-Myc - that are involved in turning off telomerase production. Their findings are published in the current issue of the Journal of Biological Chemistry.

"It's significant to find inhibitors of telomerase and we have found, for the first time, the pathway that inhibits telomerase in human cells," Associate Professor Liu said.

"This reveals an important mechanism for developing anti-cancer agents that mimic these proteins and thereby inhibit the production of telomerase. "

For more information contact Associate Professor Jun-Ping Liu on +61 3 9903 0715 or Penny Fannin, Media Communications, on +61 3 9905 5828 or 0417 125 700.

Penny Fannin | EurekAlert!
Further information:
http://www.monash.edu.au

Further reports about: Associate Liu Telomerase identified tumour

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>