Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene offers new lead in cleft lip and palate research

25.09.2006
Researchers supported by the National Institutes of Health report in the current issue of the journal Science that a much-studied gene called SUMO1, when under expressed, can cause cleft lip and palate, one of the world's most common birth defects.

With several genes already implicated in causing cleft lip and palate, the authors note their addition to the list comes with a unique biological twist. The SUMO1 gene encodes a small protein that is attached to the protein products of at least three previously discovered "clefting" genes during facial development, in essence linking them into or near a shared regulatory pathway and now hotspot for clefting.

"The big challenge for research on cleft lip and palate is to move from studying individual genes to defining individual protein networks," said Dr. Richard Maas, a scientist at Brigham and Women's Hospital and Harvard University Medical School in Cambridge, Mass. and senior author on the paper. His research is supported by NIH's National Institute of Dental and Craniofacial Research (NIDCR) and the National Institute of General Medical Sciences (NIGMS).

"By protein network, I mean a nexus of proteins that interact in a highly regulated way," he continued. "It's at this dynamic, real-time level that science will begin to see the big picture and tease out more of the needed insights to understand and hopefully eventually prevent cleft lip and palate in newborns. What's exciting about SUMO1 is it allows us for the first time to begin to connect at least some of the dots and hopefully lock into a highly informative protein network that feeds into additional protein networks to form the palate, or roof of the mouth."

According to Maas, their discovery also offers a prime example of the power of genomic research, the comparative study of individual or sets of related genes among species, from yeast to human. The discovery also highlights the utility of comprehensive gene databases, DNA libraries, and other publicly accessible genomic resources to accelerate the pace of modern science.

Maas said the work that led to this weeks's Science paper began several months ago when a clinician sent a blood sample from a five-year-old patient who had been born with a cleft lip and palate but no other obvious abnormalities. The sample arrived as part of an international program in which Maas's lab participates, called the Developmental Genome Project, or DGAP.

Launched in the late 1990s, the NIGMS-supported project relies on clinicians to send to DGAP-affiliated laboratories DNA samples from consenting patients with birth defects that appear to be caused by chromosome rearrangement, particularly so-called "balanced translocations." A balanced translocation means that during the normal cell cycle, two chromosomes stick together, break, and form again incorrectly with parts of each chromosome switching places.

"DGAP builds on the hypothesis that the translocation splits a gene involved in the developmental process, renders it non functional, and causes a visible birth defect," said Dr. Fowan Alkuraya, a post-doctoral fellow in Maas's laboratory and co-lead author on the study. "In theory, the translocation will lead us to a biologically informative gene. The challenge is to prove that theory and reality are one and the same."

As the first step in the process, Alkuraya and colleagues found that the split gene in the patient's DNA sample encoded SUMO1, a small protein that is known to attach to the back of newly formed proteins to modify their function. "This was intriguing news because SUMO1 often attaches to, or tags, proteins to undergo a biochemical process called sumoylation, which influences their behavior," said Maas. "At least three of the previously identified clefting genes are known to be sumoylated and, if SUMO1 turned out to be involved in clefting, it might lead us to a relevant protein network."

To determine whether SUMO1 was indeed a clefting gene, the Maas lab turned to their experimental model of choice, the mouse. After establishing that SUMO1 is expressed in the region of the developing mouse where the palate forms, the scientists asked the next logical question: What happens if SUMO1 is expressed at abnormally low levels as the palate forms?

The scientists turned to a research consortium called BayGenomics that employs so-called "knockout," or gene inactivation, technology to for the systematic study of the individual genes with the mouse genome to decipher their possible functions. The consortium, supported by NIH's National Heart, Lung, and Blood Institute (NHLBI), has assembled a repository of embryonic stem cells for research purposes in which each available line has a different gene knocked out, or inactivated.

The Maas lab ordered the stem cell line in which SUMO1 had been partially inactivated, implanted them into female mice, and waited. The result: Four of 46 newborn mice had clefts of the palate or face. "That's about the incidence that we see in human families with a history of cleft lip and palate," said Dr. Irfan Saadi, a co-lead author on the study and post-doctoral fellow in the Maas lab. "So we weren't put off by the low incidence at all. It's what we would have expected."

In additional work, the scientists found that when SUMO1 and the sumoylated clefting gene Eya1 were both inactivated, clefting increased to 36 percent of newborn mouse pups, an indication that their proteins interact during palate development and a point that additional experiments further confirmed.

"Ten years ago, this work might have taken our laboratory years to perform," said Maas. "But with the genomic resources that are now readily available, we can get answers in a matter of weeks or months and, just as importantly, we spend a greater proportion of our time thinking through the biology rather than worrying why an assay isn't working."

With more tools and data to sift through, Maas noted that the long held distinctions between syndromic and non-syndromic cleft lip and palate have begun to blur. Traditionally, "syndromic" means babies are born with cleft lip and/or palate, in addition to other birth defects. "Non-syndromic" refers newborns who have cleft lip and/or palate only.

"Clefting reflects the combined actions of multiple gene products, rarely only one gene and its protein," said Maas. "That's why it's likely that what we now call non-syndromic has a very heterogenous mixture of manifestations, too. It's just that the other manifestations are so subtle or not immediately obvious that we don't recognize them. Through our work and that of our colleagues, we can begin to better define these conditions."

Bob Kuska | EurekAlert!
Further information:
http://www.nidcr.nih.gov
http://www.nih.gov

Further reports about: SUMO1 birth defect cleft cleft lip clefting individual newborn translocation

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>