Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hard-wiring the fruit fly's visual system

25.09.2006
Both vertebrate and fruit fly have so-called visual maps in the brain that represent the world they see.

These visual maps consist of millions of nerve cell contacts that need to be wired correctly during development in order for the adult animal to see normally. It is generally thought that the complexity of visual maps, like other brain regions, cannot only be genetically programmed but requires activity by neurons or nerve cells in the brain.

In a new study published in the journal Current Biology, Drs. P. Robin Hiesinger, R. Grace Zhai and co-workers in the laboratory of Dr. Hugo Bellen, director of the Program in Developmental Biology at Baylor College of Medicine, found that this neuronal activity is not required for the formation of the visual map in Drosophila melanogaster, the most common form of fruit fly used in laboratories around the world.

"There is a genetic component (to formation of the vertebrate visual system)," said Bellen, who is also a Howard Hughes Medical Institute investigator. "The neurons in vertebrates are born and are genetically programmed to project into a certain brain region. This is followed by a dynamic phase where neuronal activity refines the visual map. In contrast, in flies the system seems to be completely hard-wired and only rely on genetic inputs."

... more about:
»Bellen »Visual »neurons »vertebrate

"The most obvious difference between the insect and vertebrate brain is their size and the number of neurons and connections that need to be made. A possible explanation for the findings is that the fruit fly has many fewer neurons than vertebrates, and the system can therefore just rely on the genetic components in flies," said Bellen.

"In vertebrates, complexity is added because of the challenge of millions of neurons having to make billions of precise connections. You have to work with a gross topological map first, and neuronal activity refines this map later," he said.

The study adds to an ongoing debate about the extent to which brain wiring can be genetically programmed.

"We have to be careful when we interpret these results in light of the complexity of the human brain," said Bellen.

However, he said, "It is astonishing though how only a few thousand genes can program billions of synaptic connections."

Ross Tomlin | EurekAlert!
Further information:
http://www.bcm.edu

Further reports about: Bellen Visual neurons vertebrate

More articles from Life Sciences:

nachricht Life on the edge prepares plants for climate change
18.12.2017 | Max-Planck-Institut für Entwicklungsbiologie

nachricht Lipid nanodiscs stabilize misfolding protein intermediates red-handed
18.12.2017 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>