Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study details structural changes of a key catalytic enzyme

Findings challenge traditional hypothesis, may aid in drug design

Enzymes are complex proteins capable of catalyzing specific biochemical reactions in cells. While it has long been recognized that dynamic fluctuations in protein conformation or structure play a central role in enzyme catalysis, the new findings indicate that the "dynamic energy landscape" of the enzyme funnels it along a preferred pathway that actually minimizes the number and dimension of the energetic barriers to these catalytic changes.

"There is a growing awareness that the inherent motions of proteins are essential to their functions," said Peter Wright, who is chair of the Scripps Research Department of Molecular Biology and a member of the Skaggs Institute for Chemical Biology at Scripps Research. "The importance of this study is that it reveals how dynamic structural fluctuations channel an enzyme through its reaction cycle-the thermal motions of the protein are harnessed to perform its biological function, in this case, catalysis. Knowledge of the excited-state conformations of proteins may offer new opportunities for drug design."

The researchers used nuclear magnetic resonance (NMR) to detect and characterize higher energy structural sub-states (excited states) of E. coli dihydrofolate reductase, which has been used extensively as a model enzyme for investigating the relations between structure, dynamics, and function in proteins. The researchers found that, at each stage in the catalytic cycle, the excited-state conformations resembled the ground-state structures of both the preceding and the following intermediates. This means that the dynamic fluctuations between the ground state and the excited state were "priming" the enzyme to take up the conformation of the adjacent intermediate state, facilitating the progress of catalysis by aiding the movement of ligands (molecules that bind to one chemical entity to form a larger complex) on and off the enzyme.

"These findings contrast with the traditional 'induced fit' hypothesis," Wright said. "One of the tenets of that hypothesis is that the binding of ligands induces a structural change that increases the complementary relationship between the ligand and the enzyme."

As the study points out, most proteins do not have rigid molecular structures but are structurally heterogeneous; the motion and plasticity in their structure allows them to achieve a far greater range of functions than would be possible with static structures.

However, despite considerable evidence that many enzymes are inherently flexible, the fundamental mechanisms by which protein fluctuations couple with catalytic function remain poorly understood.

In the new conformational model, a small number of minor conformational sub-states that resemble the ligand-bound conformations are already present in solution. When the ligand binds to the minor sub-state, it causes an equilibrium shift so that the ligand-bound conformation becomes the new major sub-state.

"Our study can be placed in the broader context of the catalytic cycle," Wright said. "The results imply that for each of the intermediates in the catalytic cycle of DHFR, the lowest energy excited states are the most functionally relevant conformations. The enzyme structure responds to ligands by taking up a preferred ground-state conformation, but also samples other relevant conformations of higher energy, enabling it to rapidly advance to the next steps in catalysis. As ligands change, the energy landscape and the accessible states of the enzyme change in response. Consequently, this dynamic energy landscape efficiently funnels the enzyme along a specific kinetic path, where the number and heights of the barriers between consecutive conformations have been minimized."

Keith McKeown | EurekAlert!
Further information:

Further reports about: Catalysis Dynamic Ligand catalytic enzyme fluctuations sub-state

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>