Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study details structural changes of a key catalytic enzyme

25.09.2006
Findings challenge traditional hypothesis, may aid in drug design

Enzymes are complex proteins capable of catalyzing specific biochemical reactions in cells. While it has long been recognized that dynamic fluctuations in protein conformation or structure play a central role in enzyme catalysis, the new findings indicate that the "dynamic energy landscape" of the enzyme funnels it along a preferred pathway that actually minimizes the number and dimension of the energetic barriers to these catalytic changes.

"There is a growing awareness that the inherent motions of proteins are essential to their functions," said Peter Wright, who is chair of the Scripps Research Department of Molecular Biology and a member of the Skaggs Institute for Chemical Biology at Scripps Research. "The importance of this study is that it reveals how dynamic structural fluctuations channel an enzyme through its reaction cycle-the thermal motions of the protein are harnessed to perform its biological function, in this case, catalysis. Knowledge of the excited-state conformations of proteins may offer new opportunities for drug design."

The researchers used nuclear magnetic resonance (NMR) to detect and characterize higher energy structural sub-states (excited states) of E. coli dihydrofolate reductase, which has been used extensively as a model enzyme for investigating the relations between structure, dynamics, and function in proteins. The researchers found that, at each stage in the catalytic cycle, the excited-state conformations resembled the ground-state structures of both the preceding and the following intermediates. This means that the dynamic fluctuations between the ground state and the excited state were "priming" the enzyme to take up the conformation of the adjacent intermediate state, facilitating the progress of catalysis by aiding the movement of ligands (molecules that bind to one chemical entity to form a larger complex) on and off the enzyme.

"These findings contrast with the traditional 'induced fit' hypothesis," Wright said. "One of the tenets of that hypothesis is that the binding of ligands induces a structural change that increases the complementary relationship between the ligand and the enzyme."

As the study points out, most proteins do not have rigid molecular structures but are structurally heterogeneous; the motion and plasticity in their structure allows them to achieve a far greater range of functions than would be possible with static structures.

However, despite considerable evidence that many enzymes are inherently flexible, the fundamental mechanisms by which protein fluctuations couple with catalytic function remain poorly understood.

In the new conformational model, a small number of minor conformational sub-states that resemble the ligand-bound conformations are already present in solution. When the ligand binds to the minor sub-state, it causes an equilibrium shift so that the ligand-bound conformation becomes the new major sub-state.

"Our study can be placed in the broader context of the catalytic cycle," Wright said. "The results imply that for each of the intermediates in the catalytic cycle of DHFR, the lowest energy excited states are the most functionally relevant conformations. The enzyme structure responds to ligands by taking up a preferred ground-state conformation, but also samples other relevant conformations of higher energy, enabling it to rapidly advance to the next steps in catalysis. As ligands change, the energy landscape and the accessible states of the enzyme change in response. Consequently, this dynamic energy landscape efficiently funnels the enzyme along a specific kinetic path, where the number and heights of the barriers between consecutive conformations have been minimized."

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

Further reports about: Catalysis Dynamic Ligand catalytic enzyme fluctuations sub-state

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>