Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study details structural changes of a key catalytic enzyme

25.09.2006
Findings challenge traditional hypothesis, may aid in drug design

Enzymes are complex proteins capable of catalyzing specific biochemical reactions in cells. While it has long been recognized that dynamic fluctuations in protein conformation or structure play a central role in enzyme catalysis, the new findings indicate that the "dynamic energy landscape" of the enzyme funnels it along a preferred pathway that actually minimizes the number and dimension of the energetic barriers to these catalytic changes.

"There is a growing awareness that the inherent motions of proteins are essential to their functions," said Peter Wright, who is chair of the Scripps Research Department of Molecular Biology and a member of the Skaggs Institute for Chemical Biology at Scripps Research. "The importance of this study is that it reveals how dynamic structural fluctuations channel an enzyme through its reaction cycle-the thermal motions of the protein are harnessed to perform its biological function, in this case, catalysis. Knowledge of the excited-state conformations of proteins may offer new opportunities for drug design."

The researchers used nuclear magnetic resonance (NMR) to detect and characterize higher energy structural sub-states (excited states) of E. coli dihydrofolate reductase, which has been used extensively as a model enzyme for investigating the relations between structure, dynamics, and function in proteins. The researchers found that, at each stage in the catalytic cycle, the excited-state conformations resembled the ground-state structures of both the preceding and the following intermediates. This means that the dynamic fluctuations between the ground state and the excited state were "priming" the enzyme to take up the conformation of the adjacent intermediate state, facilitating the progress of catalysis by aiding the movement of ligands (molecules that bind to one chemical entity to form a larger complex) on and off the enzyme.

"These findings contrast with the traditional 'induced fit' hypothesis," Wright said. "One of the tenets of that hypothesis is that the binding of ligands induces a structural change that increases the complementary relationship between the ligand and the enzyme."

As the study points out, most proteins do not have rigid molecular structures but are structurally heterogeneous; the motion and plasticity in their structure allows them to achieve a far greater range of functions than would be possible with static structures.

However, despite considerable evidence that many enzymes are inherently flexible, the fundamental mechanisms by which protein fluctuations couple with catalytic function remain poorly understood.

In the new conformational model, a small number of minor conformational sub-states that resemble the ligand-bound conformations are already present in solution. When the ligand binds to the minor sub-state, it causes an equilibrium shift so that the ligand-bound conformation becomes the new major sub-state.

"Our study can be placed in the broader context of the catalytic cycle," Wright said. "The results imply that for each of the intermediates in the catalytic cycle of DHFR, the lowest energy excited states are the most functionally relevant conformations. The enzyme structure responds to ligands by taking up a preferred ground-state conformation, but also samples other relevant conformations of higher energy, enabling it to rapidly advance to the next steps in catalysis. As ligands change, the energy landscape and the accessible states of the enzyme change in response. Consequently, this dynamic energy landscape efficiently funnels the enzyme along a specific kinetic path, where the number and heights of the barriers between consecutive conformations have been minimized."

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

Further reports about: Catalysis Dynamic Ligand catalytic enzyme fluctuations sub-state

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>