Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emotional control circuit of brain's fear response discovered

25.09.2006
May lead to development of tailored treatments for anxiety
Columbia University Medical Center researchers have identified an emotional control circuit in the human brain which keeps emotionally intense stimuli from interfering with mental functioning. These results significantly enhance our understanding of the neurobiology underlying psychiatric disorders involving emotional control, such as post traumatic stress disorder (PTSD) or depression.

The research employed a novel test in which subjects were forced to detect and resolve attentional conflict created by emotionally powerful stimuli. Brain activity was monitored using functional magnetic resonance imaging (fMRI) that can detect moment-to-moment changes in neural activity. fMRI is a version of the widely-used clinical MRI scanning technique.

The study, which is published in the Sept 21, 2006 issue of Neuron, was led by a Columbia University Medical Center M.D./Ph.D. student, Amit Etkin, who explained that, “Tremendous knowledge exists about how our brains deal with cognitive distractions, but we know very little about how we deal with emotional distractions. This is something we constantly do in our everyday lives, otherwise we would be overwhelmed by every emotional trigger we encounter.”

Dr. Etkin worked in the Columbia University Medical Center labs of Joy Hirsch, Ph.D., professor of neuroradiology and psychology, and director of the fMRI Research Center and Eric Kandel, M.D., Howard Hughes Medical Institute senior investigator, Fred Kavli Professor and Director of the Kavli Institute for Brain Sciences.

The current findings extend on a previous Neuron paper (Dec 16, 2004) in which Drs. Etkin, Kandel and Hirsch found that anxious individuals show more activity in the amygdala, a central brain region involved in the processing of negative emotions, when unconsciously perceiving fearful stimuli (please click here to read the Columbia press release: http://cumc.columbia.edu/news/press_releases/

hirsch_kandel_etkin_anxiety_neuron.html). When these stimuli were perceived consciously, however, the amygdalas of subject with both high and low levels of anxiety responded similarly.

Dr. Hirsch explained that this previous finding suggested that subjects were somehow able to control their conscious emotional responses, but that their unconscious responses may be more automatic. “Following the discovery of the amygdala’s role in fear response, we decided to explore the finer points of the neurocircuitry of fear – how it is regulated and controlled in the brain,” said Dr. Hirsch. facial expressions.

To study emotional regulation, Dr. Etkin collaborated with Tobias Egner, Ph.D., a post-doctoral fellow in Dr. Hirsch’s lab, who has used fMRI to study non-emotional forms of attentional control. In the 2006 Neuron paper, subjects were asked to identify the facial expressions in photos shown to them as either happy or fearful. Across each face were the words FEAR or HAPPY, and were either congruent or conflicting from the facial expressions. When the word and face clashed, subjects experienced an emotional conflict, which slowed their performance and made them less accurate in identifying facial expressions.

Using a clever behavioral trick, however, the researchers were able to discriminate between brain circuitry that detected this emotional conflict from circuitry that resolved this conflict. They found that the amygdala generates the signal telling the brain that an emotional conflict is present; this conflict then interferes with the brains ability to perform the task. The rostral anterior cingulate cortex, a region of the frontal lobe, was activated to resolve the conflict. Critically, the rostral cingulate dampened activity in the amygdala, so that the emotional response did not overwhelm subjects’ performance, thus achieving emotional control. facial expressions.

“This paper adds important regulatory circuit information about the fear response in the amygdala,” said Dr. Hirsch. “For example, if someone is walking on an empty street at night and hears a loud banging sound in the near distance, the amygdala would immediately light up. But instead of always running in the opposite direction from the sound, the rostral cingulate determines if action is needed or not. For example, if it was a car door slamming, the rostral cingulate would shut down the amygdala.”facial expressions.

“Based on these findings, tailored treatments may be developed in the future based on the biology of the person’s disease,” said Dr. Kandel. “For example, we may be able to tailor treatment for an individual depending upon whether anxiety is primarily manifested in the amygdala’s response to unconscious threat, or primarily in the ability of the rostral cingulate to control conscious emotion.”facial expressions.

“Interestingly, several studies have found that rostral cingulate activity predicts whether a depressed patient will respond to medication,” said Dr. Etkin. “The findings from the current study, therefore, may help explain why more rostral cingulate activity may be beneficial.”facial expressions.

The research team that worked on the 2006 Neuron paper also included Columbia University College of Physicians and Surgeons medical student, Daniel Peraza. facial expressions.

Elizabeth Streich | EurekAlert!
Further information:
http://www.cumc.columbia.edu

Further reports about: Amygdala Emotion Etkin Expressions Neuron cingulate fMRI rostral stimuli

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>