Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emotional control circuit of brain's fear response discovered

25.09.2006
May lead to development of tailored treatments for anxiety
Columbia University Medical Center researchers have identified an emotional control circuit in the human brain which keeps emotionally intense stimuli from interfering with mental functioning. These results significantly enhance our understanding of the neurobiology underlying psychiatric disorders involving emotional control, such as post traumatic stress disorder (PTSD) or depression.

The research employed a novel test in which subjects were forced to detect and resolve attentional conflict created by emotionally powerful stimuli. Brain activity was monitored using functional magnetic resonance imaging (fMRI) that can detect moment-to-moment changes in neural activity. fMRI is a version of the widely-used clinical MRI scanning technique.

The study, which is published in the Sept 21, 2006 issue of Neuron, was led by a Columbia University Medical Center M.D./Ph.D. student, Amit Etkin, who explained that, “Tremendous knowledge exists about how our brains deal with cognitive distractions, but we know very little about how we deal with emotional distractions. This is something we constantly do in our everyday lives, otherwise we would be overwhelmed by every emotional trigger we encounter.”

Dr. Etkin worked in the Columbia University Medical Center labs of Joy Hirsch, Ph.D., professor of neuroradiology and psychology, and director of the fMRI Research Center and Eric Kandel, M.D., Howard Hughes Medical Institute senior investigator, Fred Kavli Professor and Director of the Kavli Institute for Brain Sciences.

The current findings extend on a previous Neuron paper (Dec 16, 2004) in which Drs. Etkin, Kandel and Hirsch found that anxious individuals show more activity in the amygdala, a central brain region involved in the processing of negative emotions, when unconsciously perceiving fearful stimuli (please click here to read the Columbia press release: http://cumc.columbia.edu/news/press_releases/

hirsch_kandel_etkin_anxiety_neuron.html). When these stimuli were perceived consciously, however, the amygdalas of subject with both high and low levels of anxiety responded similarly.

Dr. Hirsch explained that this previous finding suggested that subjects were somehow able to control their conscious emotional responses, but that their unconscious responses may be more automatic. “Following the discovery of the amygdala’s role in fear response, we decided to explore the finer points of the neurocircuitry of fear – how it is regulated and controlled in the brain,” said Dr. Hirsch. facial expressions.

To study emotional regulation, Dr. Etkin collaborated with Tobias Egner, Ph.D., a post-doctoral fellow in Dr. Hirsch’s lab, who has used fMRI to study non-emotional forms of attentional control. In the 2006 Neuron paper, subjects were asked to identify the facial expressions in photos shown to them as either happy or fearful. Across each face were the words FEAR or HAPPY, and were either congruent or conflicting from the facial expressions. When the word and face clashed, subjects experienced an emotional conflict, which slowed their performance and made them less accurate in identifying facial expressions.

Using a clever behavioral trick, however, the researchers were able to discriminate between brain circuitry that detected this emotional conflict from circuitry that resolved this conflict. They found that the amygdala generates the signal telling the brain that an emotional conflict is present; this conflict then interferes with the brains ability to perform the task. The rostral anterior cingulate cortex, a region of the frontal lobe, was activated to resolve the conflict. Critically, the rostral cingulate dampened activity in the amygdala, so that the emotional response did not overwhelm subjects’ performance, thus achieving emotional control. facial expressions.

“This paper adds important regulatory circuit information about the fear response in the amygdala,” said Dr. Hirsch. “For example, if someone is walking on an empty street at night and hears a loud banging sound in the near distance, the amygdala would immediately light up. But instead of always running in the opposite direction from the sound, the rostral cingulate determines if action is needed or not. For example, if it was a car door slamming, the rostral cingulate would shut down the amygdala.”facial expressions.

“Based on these findings, tailored treatments may be developed in the future based on the biology of the person’s disease,” said Dr. Kandel. “For example, we may be able to tailor treatment for an individual depending upon whether anxiety is primarily manifested in the amygdala’s response to unconscious threat, or primarily in the ability of the rostral cingulate to control conscious emotion.”facial expressions.

“Interestingly, several studies have found that rostral cingulate activity predicts whether a depressed patient will respond to medication,” said Dr. Etkin. “The findings from the current study, therefore, may help explain why more rostral cingulate activity may be beneficial.”facial expressions.

The research team that worked on the 2006 Neuron paper also included Columbia University College of Physicians and Surgeons medical student, Daniel Peraza. facial expressions.

Elizabeth Streich | EurekAlert!
Further information:
http://www.cumc.columbia.edu

Further reports about: Amygdala Emotion Etkin Expressions Neuron cingulate fMRI rostral stimuli

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>