Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research breakthrough for the protein factories of tomorrow

Using a kind of molecular ‘hip joint operation,’ researchers at Uppsala University have succeeded in replacing a natural amino acid in a protein with an artificial one. This step forward opens the possibility of creating proteins with entirely new properties that can be tailored to biotechnological applications. The study is presented in the latest issue of the prestigious journal Chemistry and Biology.

All proteins are made out of twenty amino acids. These natural building blocks determine the structure and function of the protein. Bengt Mannervik’s research team at Uppsala University has now demonstrated that artificial amino acids can be exchanged for a natural one that is critical to the stability and catalytic properties of the protein. The study opens the possibility of a new chemical biology where entirely new properties can be custom made for biotechnological applications.

Their research work has focused on an important enzyme, glutation transferase, which participates in the detoxification of the body from carcinogenic substances. The enzyme is made up of two identical protein structures that are joined by a contact similar to a key that fits a lock. The key is an amino acid that fits a cavity in the neighboring protein structure. In their work, the key has been replaced by artificial amino acids. Some exchanges yielded a fully active enzyme, while others did not.

The current study is a molecular equivalent to a hip joint operation, where the natural joint is replaced by an artificial part that is more robust. With the same methodology it is also possible not only to replace natural structures and functions but also to give proteins entirely new properties. Using simple chemistry, the twenty existent amino acids can be exchanged for hundreds of new chemical structures. In this way new proteins can be created with building blocks far beyond the limits of the genetic code.

Anneli Waara | alfa
Further information:

Further reports about: acid amino amino acid artificial

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>