Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new understanding of how cells defend themselves against bacterial pore-forming toxins

22.09.2006
Biologists at the EPFL (Ecole Polytechnique Federale de Lausanne) have unveiled a new twist in a metabolic pathway that cells use to defend themselves against toxins made by disease-causing bacteria.

The discovery of this pathway, published in the September 22 issue of the journal Cell, advances our understanding of how cells mount a survival response when attacked by bacteria and parasites and also gives insight into the more general process of cell membrane biogenesis.

Bacteria and parasites often use special toxins to perforate the membranes of target cells. These pore-forming toxins are a key weapon in the attack arsenal of some common and virulent bacteria, such as Staphylococcus aureus, well-known for its role in hospital-acquired infections, Streptococcus pneumonie, responsible for middle ear infections and pneumonia, and Helicobacter pylori, implicated in ulcers. Pore-forming toxins compose about a quarter of all known protein toxins that increase the infectivity and severity of bacterial diseases.

Once the toxin perforates the host membrane, ions begin to leak out of the cell. Sensing a drop in its potassium concentration, the cell reacts by forming a multi-protein complex known as an inflammasome. Scientists know that inflammasomes act like a sort of roving security force inside the cell, detecting a variety of danger signals such as bacterial RNA or bits of bacterial flagellin. The inflammasomes join together and activate a protein, caspase-1, that in turn triggers an inflammatory response.

... more about:
»Goot »Ion »Lipid »Toxin »bacterial »pore-forming

Van der Goot and her colleagues found that in addition to its normal role as a signal for inflammatory response, caspase-1 also triggers the cell’s central regulators for membrane synthesis, launching a bout of lipid metabolism. This previously undetected part of the response pathway has important implications for cell survival.

The Swiss team studied the pathway by using RNA interference to silence genes involved. Interrupting the pathway at any point, either by silencing the genes responsible for the inflammasome formation or the gene for caspase-1, resulted in increased cell death.

“We don’t yet know the details of the mechanism by which lipid metabolism leads to cell survival,” she says. The lipids are probably used to repair the cell membrane, stopping the potassium leak, which itself can kill the cell, and also protecting the cell from additional toxic substances lurking outside.

“This result is important, because it also explains so much in terms of basic cell physiology,” notes Van der Goot. If a cell absorbs too much water, for example, this pathway would be triggered. The lipids formed in the metabolic pathway would enable the cell to enlarge its membrane to accommodate the extra water.

“Toxins have co-evolved with their hosts for a long time,” says Van der Goot. “That makes them good tools with which to study normal cell physiology. This study is a case in point – using a toxin, we have the first step in an understanding of how cells can regulate their membranes in order to maintain a particular ion concentration.”

The research focused on epithelial cells, the cells that line the gut and blood vessels. Van der Goot explains that because they form a protective layer, it’s critical for the organism that these cells survive, even if they don’t function correctly. If the cell dies, it leaves the underlying tissue exposed. She hypothesizes that the toxin response pathway may be different for other types of cells. Immune cells, for example, may be better off committing suicide if their membranes are penetrated, because they could become deadly if their function is compromised.

Van der Goot adds that a better understanding of the biochemical pathway that allows epithelial cells to survive an invasion by a pore-forming toxin will prove valuable as biomedical researchers try to develop drugs to fight antibiotic-resistant strains of bacteria that use these toxins as part of their hijacking strategy.

Gisou Van der Goot is a leading professor in EPFL’s newly formed Global Health Institute, a multidisciplinary initiative that brings researchers from biology, chemistry, computer sciences, engineering and medicine together to work on the major infectious threats of our time, at the level of prevention, diagnostics and therapeutics. She is a Howard Hughes International Research Scholar.

Mary Parlange | alfa
Further information:
http://www.epfl.ch

Further reports about: Goot Ion Lipid Toxin bacterial pore-forming

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>