Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasitic wasps protect offspring by avoiding the smelly feet of ladybirds

21.09.2006
Scientists at Rothamsted Research have identified how aphid parasitic wasps prevent their offspring being eaten by ladybirds. The tiny wasps implant their offspring parasitically into aphid pests, but should the aphid get eaten by a ladybird, the growing wasp would be consumed as well.

The researchers, supported by the Biotechnology and Biological Sciences Research Council (BBSRC), have found that to protect their offspring, adult wasps have evolved to avoid the smell of a short-lived blend of chemicals that ladybirds deposit with each footprint they make. The scientists have identified the particular cocktail of chemicals.

Both wasps and ladybirds are predators of aphids but they have evolved techniques to enable them avoid each other and maximise their own success. As aphids are significant pests for gardeners and farmers the natural mechanisms that have developed help these two predators to interact efficiently to help control aphid numbers.

The scientists at Rothamsted Research, Professor Wilf Powell and Dr Mike Birkett, together with visiting Japanese scientist Dr Yoshitaka Nakashima, have identified the chemicals involved and have also shown that the smell of different ladybird species repels different parasitic wasp species to various degrees. Dr Wilf Powell explained: ”We found that parasitic wasps attacking aphids living in a wooded area responded most strongly to the chemical footprints of woodland-dwelling ladybirds and similarly for those found more often in fields of crops. This suggests that these two aphid predators have evolved mutually beneficial avoidance techniques to maximise their own chances of success.

... more about:
»Ladybird »Rothamsted »aphid »offspring »parasitic

“A better understanding of the natural interactions between parasitic wasps, insect predators and their prey has the potential to help us to use them more effectively to control garden and agricultural pests and reduce the amount of pesticides we spray.”

The research is being displayed to the public for the first time at an open weekend at Rothamsted Research next weekend (30 September-1 October). The Rothamsted scientists worked in collaboration with a visiting researcher from the University of Agriculture and Veterinary Medicine, Obihoro, Japan who was supported by the Japanese Society for the Promotion of Science. Some aspects of the work were also supported by the Department for Food, Environment and Rural Affairs (Defra).

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk/media/pressreleases/06_09_21_parasitic_wasps.html

Further reports about: Ladybird Rothamsted aphid offspring parasitic

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>