Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cardiologist's 'living chip' changes science of disease monitoring

20.09.2006
For patients living with heart failure and other health conditions, blood draws and diagnostic tests are commonplace in order to evaluate their condition. Often, though, chemical or physiologic changes silently cause damage that is not detected until much later.

But what if in the future a tiny device, one the size of a nickel or significantly smaller, could be implanted in the patient to monitor and detect abnormalities, and could then relay data to physicians, or provide therapy on the spot, in real time?

It may sound like science fiction, but this concept is moving toward reality at Physiologic Communications LLC, a biotech company founded by University of Rochester Medical Center cardiologist Spencer Rosero, M.D., who specializes in heart rhythm disorders. The company is developing implantable biosensors – integrating living cells with electronics – to create a "biological chip." When implanted, this chip can detect physiologic and chemical changes with faster, improved accuracy. These more accurate results, retrieved without invasive testing, allow for better and timely response and, the hope is, a healthier patient.

How it works Ultimately, cells specific to the patient can be engineered to live on and function as part of the miniature electronic chip. The wireless biosensor is placed within and around blood vessels and nerves to provide detection and stimulation of the surrounding tissues or organ systems, with the ability to detect changes. A change triggers a message to a wireless device to alert the patient early on about a problem. The patient can then contact their physician.

For a patient with heart failure, for example, the biosensor could detect a change in blood protein levels at an early stage, prompting the physician to alter medications to correct the problem. Currently, without blood work being done, the patient or physician would not suspect an issue until the patient began having symptoms or underwent pre-scheduled testing at a routine visit. Catching the problem earlier means the patient remains healthier, and greatly lessens the chance of a hospital stay.

The initial application for this technology is expected to involve pharmaceutical companies, which could use the biological chips to test potential drugs in the lab more quickly and accurately. In later generations, the chip ultimately could command implanted devices – for example, a wireless defibrillator/pacemaker or an insulin pump – to take action to correct a detected abnormality. The device would communicate with the living chip in real time, making adjustments as a direct result of the chip's ability to detect changes.

The company's molecular biology team is being led by Bradford Berk, M.D, Ph.D., an internationally known scientist and CEO of the University of Rochester Medical Center. "Cell-based analysis of physiologic functions is a novel approach to monitoring human disease and response to therapy," Berk said. "A key aspect of our approach is integrating the cells in a matrix that promotes normal function and optimal monitoring." Both Berk's laboratory and that of researcher Keigi Fujiwara, Ph.D., will collaborate with Physiologic Communications on the technology.

"21st Century medicine recognizes that individual patients respond differently to diagnostic and therapeutic interventions," Rosero said. "The key to personalizing an individual's care is to improve the manner in which one can detect abnormalities in chemical signals or physiologic activity in real-time using technology that is minimally invasive. We are on the road to doing this."

Promising technology

Physiologic Communications, created 18 months ago by Rosero, has quickly grown from an idea to a successful start-up venture thanks in part to Excell Partners Inc. The Rochester-based consortium assists young companies with funding from New York state, Cornell University and the University of Rochester, and provided Rosero's start-up with the opportunity to develop a first-generation device. As research progressed, Excell offered additional support that this month resulted in the hiring of two full-time employees to complement an existing multidisciplinary team of scientific, engineering and business experts.

"We believe this technology will change the face of medical monitoring and, ultimately, device therapy for many types of patients," Rosero said.

The company utilizes experts in the fields of molecular biology, clinical cardiology and electrical engineering, and brings together scientists, engineers, physicians and a host of local business leaders from academia and upstate New York industry. The concept has seen strong support from individuals such as Terry Gronwall, an entrepreneur-in-residence at the High Tech Rochester Incubator, who took the lead in assessing Physiologic Communication's success potential and mentoring the researchers in the complicated art of business.

All the resources necessary are found regionally, a fact that excites Rosero. "We don't have to venture farther than our own back yard to find what we need to make this chip a reality," he said.

The University of Rochester Medical Center's Office of Technology Transfer, which assists University researchers in developing new inventions, immediately saw the promise in Rosero's idea and enlisted the assistance of High Tech Rochester.

"This type of product is referred to as a 'disruptive technology,'" said John Fahner-Vihtelic, deputy director of the Office of Technology Transfer. "It has the potential to change the way things currently are being done. When this chip is fully developed, it will impact the way patients are monitored, and the way they receive therapy. It will supercede what is already out there."

If there is a perfect path for a start-up company to take, Physiologic Communications has found it, Fahner-Vihtelic said. It's the path down which the Office of Technology Transfer hopes it can direct other University researchers with promising ideas.

"Over the past five years we've amassed a group of Rochester experts in the areas of business-building," Fahner-Vihtelic said. "These are local people who work with High Tech Rochester and other entities to offer their advice in the areas of business-plan writing, marketing surveys, legal counsel and anything else an entrepreneur needs to develop a successful business. By using these Rochester experts, the researcher doesn't have to spend time learning those aspects of business-building – he or she can stay at the desk or workbench, continuing to develop the technology and not worrying about the day-to-day aspects of trying to get the company going."

The benefits of a high-tech start-up business and the jobs it creates are far-reaching, Fahner-Vihtelic said. The addition of two such positions at Physiologic Communications, one of which was filled by an individual who relocated from Florida, will undoubtedly have a positive impact on Rochester.

"Our economy recently has seen downsizing and layoffs," he said. "What Rochester needs are new businesses in high technology. Those are the kind of start-ups that will attract employees from elsewhere to our community."

Karin Christensen | EurekAlert!
Further information:
http://www.urmc.rochester.edu

Further reports about: Bird Communication Fahner-Vihtelic Living Physician Physiologic Rosero

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>