Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Psst! Coffee drinkers: Fruit flies have something to tell you about caffeine

19.09.2006
In their hunt for genes and proteins that explain how animals discern bitter from sweet, a team of Johns Hopkins researchers began by testing whether mutant fruit flies prefer eating sugar over sugar laced with caffeine. Using a simple behavioral test, the researchers discovered that a single protein missing from the fly-equivalent of our taste buds caused them to ignore caffeine's taste and consume the caffeine as if it were not there.

"No, you won't see jittery Drosophila flitting past your bananas to slurp your morning java anytime soon," says Craig Montell, Ph.D., a professor of biological chemistry in the Institute of Basic Biomedical Sciences at Hopkins. "The bottom line is that our mutant flies willingly drink caffeine-laced liquids and foods because they can't taste its bitterness -- their taste receptor cells don't detect it."

The Hopkins flies, genetically mutated to lack a certain taste receptor protein, have been the focus of studies to sort out how animals taste and why we like the taste of some things but are turned off by the taste of others.

By color-coding sweet and bitter substances eaten by fruit flies and examining the coloring that shows up in their translucent bellies, the Hopkins team hoped to learn whether flies missing a specific "taste-receptor" protein changed their taste preferences.

... more about:
»Gr66a »Montell »caffeine »flies »receptor

"Normally," Montell explains, "when given the choice between sweet and bitter substances, flies avoid caffeine and other bitter-tasting chemicals. But flies missing this particular taste-receptor protein, called Gr66a, consume caffeine because their taste-receptor cells don't fire in response to it."

The discovery, which is the first ever example of a protein required for both caffeine tasting and caffeine-induced behavior, will be published Sept. 19 in Current Biology.

For the study, Montell and his colleagues kept 50 fruit flies away from food overnight and for breakfast gave the starved flies 90 minutes to eat as much as they wanted of either or both of two concoctions: a blue-colored mixture of sugar and agar and a red-colored mixture of caffeine, sugar and agar. The researchers then flipped the flies onto their backs and looked at the color of their bellies to see what they ate - blue indicating a preference for eating sugar, red indicating a preference for bitter caffeine, and purple indicating no preference.

Flies missing the critical taste receptor protein Gr66a consumed the bitter caffeine solution to the same extent as the sugar-only solution. Montell and colleagues conclude that Gr66a is crucial for the normal caffeine avoidance behavior and without it, flies are seemingly indifferent to the bitter taste.

The researchers went on to examine whether this indifference to bitter was due to the taste nerves on the fly's "tongue" or some malfunction in the fly's brain. Chemical stimulants trigger taste receptor cells to send an electrical current to the brain where the information is processed and often leads to a change in behavior, such as the decision to eat or avoid.

With fine tools, the research team recorded electrical currents in those cells known to contain the Gr66a caffeine taste receptor in the fly's equivalent of the taste buds - dubbed the taste bristles.

Applying sugar to the taste bristles of normal flies, or to mutant flies missing the Gr66a protein, causes the neurons to produce electrical current "spikes" at a frequency of about 20 spikes per second. Other bitter compounds like quinine generated electrical current spikes at about the same frequency in the mutants.

Only flies missing the Gr66a taste receptor protein were unable to generate any current spikes when given caffeine. "This is a clear demonstration that Gr66a is functioning in the taste receptor cells and is not a 'general sensor' for bitter compounds, but is required more specifically for the caffeine response," says Montell.

"This indicates that flies have different receptors for the response to other types of bitter compounds," he says.

"We also tested whether the flies avoided the related bitter compounds found in tea and cocoa -- chocolate -- and found that Gr66a also is required for the response to the compound in tea, but not for the one in chocolate," he says.

Fruit flies often are used as experimental organisms because they grow quickly and are easy to manipulate genetically. Now that Montell and his colleagues have a mutant fly that is unable to taste caffeine, they hope to further examine the other genes and molecules involved in the caffeine response and better understand the biochemistry behind caffeine-induced behavior in other organisms, namely humans.

Audrey Huang | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/cmontell/
http://www.hopkinsmedicine.org/ibbs/index.html

Further reports about: Gr66a Montell caffeine flies receptor

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>