Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Two-faced protein can stop metastasis or promote it, researchers say

A protein known to be a key component of the glue that holds cells together also is involved in breaking them apart and promoting their movement when tumors begin to spread to other parts of the body, researchers at Mayo Clinic have found.

The study, published in the Sept. 18 online issue of the Journal of Cell Biology, helps illuminate the very first steps involved in metastasis, the spread of cancer that makes the disease difficult to treat, and suggests that a future designer drug might be able to block the beginning of this dangerous process, or stop it once it starts.

"Our data show that this one protein, p120 catenin, is a key player in both suppressing invasion and promoting it," says the study's senior author, Panos Anastasiadis, Ph.D., a Mayo Clinic cancer researcher. "This is very exciting, because the findings open up a whole new field of discovery for novel therapeutics that should be applicable to most types of tumors."

Their laboratory study looks at how p120 catenin interacts with different cadherin cell adhesion proteins in cancer cells. Cadherin proteins go through a cell membrane, and on the outside, they act like Velcro, sticking to other cadherin proteins on adjacent cells. On the inside of the cell membrane, cadherins bind, chain-like, to catenins, and catenins, in turn, regulate a cell's shape and function.

The best understood cadherin is E-cadherin, which provides tight connections between epithelial cells, forming a strong barrier-like layer covering the inside of organs and body cavities and the outside skin of humans. "E-cadherin holds a human's cells and tissues together," Anastasiadis says.

The other cadherins featured in this study belong to a group that collectively is called "mesenchymal" cadherins, which provide a looser bond between the cells that sparsely populate the connective tissue. "Collagen usually provides the strength to the connective tissue, so tight cell-cell adhesion is not that important," he says.

Sometimes, such as during human development or wound repair, epithelial cells need to travel to other areas, and to do this, they undergo a process known as "epithelial-mesenchymal transition" (EMT). The cell reduces its production of E-cadherin proteins and increases expression of mesenchymal cadherins, thus effectively loosening the anchors that keep the cell bound to its neighbors.

Cancer, unfortunately, has adopted this strategy in order to spread, Anastasiadis says. "When the function of E-cadherin is lost in a cell, it can break free from its neighbors and travel to settle elsewhere," he says. "This means that E-cadherin normally helps suppress invasion."

But researchers have noted that the p120 catenin protein seems mysteriously two-faced: while it normally strengthens cell-cell bonding, in some cases it can also negatively affect cell adhesion. They also have found that over production of p120 increases a cell's ability to move. But the significance of these observations had eluded scientists.

In this study, Masahiro Yanagisawa, M.D., Ph.D., a research fellow in Anastasiadis' laboratory, and Anastasiadis provide an answer as to why p120 acts this way, which helps explain how the EMT shift between E-cadherin and mesenchymal cadherins allows cancer cells to break away from tissue and spread.

They found that p120 "prefers" to bind to E-cadherin, rather than to mesenchymal cadherins. So in normal epithelial cells p120 always associates with the more abundant E-cadherins. But when E-cadherin production is lost during the progression of cancer, p120 catenins begin binding to mesenchymal cadherins. And when that happens, the researchers found that p120 unexpectedly switches on a cascade of events that promote cell movement.

"We show that E-cadherin suppresses invasion, at least in part, by binding to p120 protein in the cell," Anastasiadis says. "If E-cadherin is missing, p120 is free to bind to mesenchymal cadherins, setting off a process that leads to metastasis."

Thus, p120 acts as a "rheostat" that promotes either stability when associated with E-cadherin or motility when it interacts with mesenchymal cadherins, he says.

The investigators say that further research is needed to see if p120 functions the same way in living tissue as it does in laboratory cell culture, and they add that other "pathways" are likely involved in the transition to metastasis. But if the results continue to hold up, "it might be therapeutically possible to selectively shut down the pro-invasive function of p120 on mesenchymal cadherins while keeping the pro-adhesion function of p120 in normal epithelial cells.

"We have provided a better understanding of the processes involved in the initiation of tumor spread, and it is this process that we all seek to shut down," Anastasiadis says.

Christine Leon | EurekAlert!
Further information:

Further reports about: Anastasiadis E-Cadherin P120 cadherin epithelial mesenchymal metastasis promote

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>