Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Don't care for broccoli? A receptor gene's variation suggests an evolutionary excuse

19.09.2006
By testing the bitterness perceived by individuals possessing different versions of the same taste receptor, researchers have obtained new evidence supporting the idea that evolution of the receptor gene has shaped avoidance of certain vegetables that can inhibit thyroid function.

The findings are reported by Mari Hakala and Paul Breslin of Monell Chemical Sciences Center in Philadelphia, Pennsylvania and appear in the September 19th issue of Current Biology, published by Cell Press.

Compounds known as glucosinolates are present in a variety of vegetables included in the human diet (especially Cruciferous vegetables), but these compounds can block the formation of organic iodine and the transport of iodine into the thyroid. Iodine is necessary for proper thyroid function, and in geographic regions where inorganic iodine levels are low, endemic goiter (enlarged thyroid) can arise in response to the need to maintain levels of thyroid hormone. In such circumstances, thyroid toxins such as glucosinolates can exacerbate problems with thyroid function. Deficiencies in thyroid function can result in retarded sexual maturation and mental retardation in low-iodine regions (typically, remote areas far from the sea).

Past work has suggested that evolution of the TAS2R family of bitter taste receptors has been shaped by the potential advantage of avoiding certain toxic compounds in plants, but the evidence thus far has been based on findings that used synthetic bitter compounds. For example, past work showed that people possessing genetically different versions of a particular TAS2R receptor exhibit correspondingly different sensitivities to the bitter compounds phenylthiocarbamide (PTC) and propylthiouracil (PROP), which resemble glucosinolates.

... more about:
»Broccoli »Thyroid »glucosinolates »iodine »receptor

In the new work, researchers were able to show that different genetic versions of this same receptor, known as hTAS2R38, specifically determine people's perception of plants that synthesize glucosinolates. In their experiments, the researchers divided a test array of vegetables into those that contain glucosinolates, such as broccoli and turnips, and those that do not contain known glucosinolates. The researchers found that individuals possessing two copies of a "sensitive" version of the hTAS2R38 gene rated the glucosinolate-containing vegetables as 60% more bitter than did subjects possessing two copies of an "insensitive" version of the receptor gene. In comparison, individuals possessing one copy of each version of the gene rated the bitterness of glucosinolate-containing vegetables at an intermediate level.

The researchers found that the differences in bitterness perception by the "sensitive" and "insensitive" hTAS2R38 groups reached statistical significance for six vegetables: watercress, mustard greens, turnip, broccoli, rutabaga, and horseradish.

Though iodine supplementation aids significantly in ameliorating thyroid problems in low-iodine areas, the researchers note that over 1 billion people worldwide are at risk, in principle, for thyroid insufficiency--this reflects the likelihood that strong selective pressures in the past have shaped our ability to detect anti-thyroid compounds and avoid them, especially in low-iodine regions. The new findings illustrate the importance of individual taste receptor genes in shaping our perception of foods and, the researchers point out, show that variation in even a single gene can impact how people perceive an entire family of vegetables.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

Further reports about: Broccoli Thyroid glucosinolates iodine receptor

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>