Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Don't care for broccoli? A receptor gene's variation suggests an evolutionary excuse

19.09.2006
By testing the bitterness perceived by individuals possessing different versions of the same taste receptor, researchers have obtained new evidence supporting the idea that evolution of the receptor gene has shaped avoidance of certain vegetables that can inhibit thyroid function.

The findings are reported by Mari Hakala and Paul Breslin of Monell Chemical Sciences Center in Philadelphia, Pennsylvania and appear in the September 19th issue of Current Biology, published by Cell Press.

Compounds known as glucosinolates are present in a variety of vegetables included in the human diet (especially Cruciferous vegetables), but these compounds can block the formation of organic iodine and the transport of iodine into the thyroid. Iodine is necessary for proper thyroid function, and in geographic regions where inorganic iodine levels are low, endemic goiter (enlarged thyroid) can arise in response to the need to maintain levels of thyroid hormone. In such circumstances, thyroid toxins such as glucosinolates can exacerbate problems with thyroid function. Deficiencies in thyroid function can result in retarded sexual maturation and mental retardation in low-iodine regions (typically, remote areas far from the sea).

Past work has suggested that evolution of the TAS2R family of bitter taste receptors has been shaped by the potential advantage of avoiding certain toxic compounds in plants, but the evidence thus far has been based on findings that used synthetic bitter compounds. For example, past work showed that people possessing genetically different versions of a particular TAS2R receptor exhibit correspondingly different sensitivities to the bitter compounds phenylthiocarbamide (PTC) and propylthiouracil (PROP), which resemble glucosinolates.

... more about:
»Broccoli »Thyroid »glucosinolates »iodine »receptor

In the new work, researchers were able to show that different genetic versions of this same receptor, known as hTAS2R38, specifically determine people's perception of plants that synthesize glucosinolates. In their experiments, the researchers divided a test array of vegetables into those that contain glucosinolates, such as broccoli and turnips, and those that do not contain known glucosinolates. The researchers found that individuals possessing two copies of a "sensitive" version of the hTAS2R38 gene rated the glucosinolate-containing vegetables as 60% more bitter than did subjects possessing two copies of an "insensitive" version of the receptor gene. In comparison, individuals possessing one copy of each version of the gene rated the bitterness of glucosinolate-containing vegetables at an intermediate level.

The researchers found that the differences in bitterness perception by the "sensitive" and "insensitive" hTAS2R38 groups reached statistical significance for six vegetables: watercress, mustard greens, turnip, broccoli, rutabaga, and horseradish.

Though iodine supplementation aids significantly in ameliorating thyroid problems in low-iodine areas, the researchers note that over 1 billion people worldwide are at risk, in principle, for thyroid insufficiency--this reflects the likelihood that strong selective pressures in the past have shaped our ability to detect anti-thyroid compounds and avoid them, especially in low-iodine regions. The new findings illustrate the importance of individual taste receptor genes in shaping our perception of foods and, the researchers point out, show that variation in even a single gene can impact how people perceive an entire family of vegetables.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

Further reports about: Broccoli Thyroid glucosinolates iodine receptor

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>