Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Don't care for broccoli? A receptor gene's variation suggests an evolutionary excuse

19.09.2006
By testing the bitterness perceived by individuals possessing different versions of the same taste receptor, researchers have obtained new evidence supporting the idea that evolution of the receptor gene has shaped avoidance of certain vegetables that can inhibit thyroid function.

The findings are reported by Mari Hakala and Paul Breslin of Monell Chemical Sciences Center in Philadelphia, Pennsylvania and appear in the September 19th issue of Current Biology, published by Cell Press.

Compounds known as glucosinolates are present in a variety of vegetables included in the human diet (especially Cruciferous vegetables), but these compounds can block the formation of organic iodine and the transport of iodine into the thyroid. Iodine is necessary for proper thyroid function, and in geographic regions where inorganic iodine levels are low, endemic goiter (enlarged thyroid) can arise in response to the need to maintain levels of thyroid hormone. In such circumstances, thyroid toxins such as glucosinolates can exacerbate problems with thyroid function. Deficiencies in thyroid function can result in retarded sexual maturation and mental retardation in low-iodine regions (typically, remote areas far from the sea).

Past work has suggested that evolution of the TAS2R family of bitter taste receptors has been shaped by the potential advantage of avoiding certain toxic compounds in plants, but the evidence thus far has been based on findings that used synthetic bitter compounds. For example, past work showed that people possessing genetically different versions of a particular TAS2R receptor exhibit correspondingly different sensitivities to the bitter compounds phenylthiocarbamide (PTC) and propylthiouracil (PROP), which resemble glucosinolates.

... more about:
»Broccoli »Thyroid »glucosinolates »iodine »receptor

In the new work, researchers were able to show that different genetic versions of this same receptor, known as hTAS2R38, specifically determine people's perception of plants that synthesize glucosinolates. In their experiments, the researchers divided a test array of vegetables into those that contain glucosinolates, such as broccoli and turnips, and those that do not contain known glucosinolates. The researchers found that individuals possessing two copies of a "sensitive" version of the hTAS2R38 gene rated the glucosinolate-containing vegetables as 60% more bitter than did subjects possessing two copies of an "insensitive" version of the receptor gene. In comparison, individuals possessing one copy of each version of the gene rated the bitterness of glucosinolate-containing vegetables at an intermediate level.

The researchers found that the differences in bitterness perception by the "sensitive" and "insensitive" hTAS2R38 groups reached statistical significance for six vegetables: watercress, mustard greens, turnip, broccoli, rutabaga, and horseradish.

Though iodine supplementation aids significantly in ameliorating thyroid problems in low-iodine areas, the researchers note that over 1 billion people worldwide are at risk, in principle, for thyroid insufficiency--this reflects the likelihood that strong selective pressures in the past have shaped our ability to detect anti-thyroid compounds and avoid them, especially in low-iodine regions. The new findings illustrate the importance of individual taste receptor genes in shaping our perception of foods and, the researchers point out, show that variation in even a single gene can impact how people perceive an entire family of vegetables.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

Further reports about: Broccoli Thyroid glucosinolates iodine receptor

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>