Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Don't care for broccoli? A receptor gene's variation suggests an evolutionary excuse

19.09.2006
By testing the bitterness perceived by individuals possessing different versions of the same taste receptor, researchers have obtained new evidence supporting the idea that evolution of the receptor gene has shaped avoidance of certain vegetables that can inhibit thyroid function.

The findings are reported by Mari Hakala and Paul Breslin of Monell Chemical Sciences Center in Philadelphia, Pennsylvania and appear in the September 19th issue of Current Biology, published by Cell Press.

Compounds known as glucosinolates are present in a variety of vegetables included in the human diet (especially Cruciferous vegetables), but these compounds can block the formation of organic iodine and the transport of iodine into the thyroid. Iodine is necessary for proper thyroid function, and in geographic regions where inorganic iodine levels are low, endemic goiter (enlarged thyroid) can arise in response to the need to maintain levels of thyroid hormone. In such circumstances, thyroid toxins such as glucosinolates can exacerbate problems with thyroid function. Deficiencies in thyroid function can result in retarded sexual maturation and mental retardation in low-iodine regions (typically, remote areas far from the sea).

Past work has suggested that evolution of the TAS2R family of bitter taste receptors has been shaped by the potential advantage of avoiding certain toxic compounds in plants, but the evidence thus far has been based on findings that used synthetic bitter compounds. For example, past work showed that people possessing genetically different versions of a particular TAS2R receptor exhibit correspondingly different sensitivities to the bitter compounds phenylthiocarbamide (PTC) and propylthiouracil (PROP), which resemble glucosinolates.

... more about:
»Broccoli »Thyroid »glucosinolates »iodine »receptor

In the new work, researchers were able to show that different genetic versions of this same receptor, known as hTAS2R38, specifically determine people's perception of plants that synthesize glucosinolates. In their experiments, the researchers divided a test array of vegetables into those that contain glucosinolates, such as broccoli and turnips, and those that do not contain known glucosinolates. The researchers found that individuals possessing two copies of a "sensitive" version of the hTAS2R38 gene rated the glucosinolate-containing vegetables as 60% more bitter than did subjects possessing two copies of an "insensitive" version of the receptor gene. In comparison, individuals possessing one copy of each version of the gene rated the bitterness of glucosinolate-containing vegetables at an intermediate level.

The researchers found that the differences in bitterness perception by the "sensitive" and "insensitive" hTAS2R38 groups reached statistical significance for six vegetables: watercress, mustard greens, turnip, broccoli, rutabaga, and horseradish.

Though iodine supplementation aids significantly in ameliorating thyroid problems in low-iodine areas, the researchers note that over 1 billion people worldwide are at risk, in principle, for thyroid insufficiency--this reflects the likelihood that strong selective pressures in the past have shaped our ability to detect anti-thyroid compounds and avoid them, especially in low-iodine regions. The new findings illustrate the importance of individual taste receptor genes in shaping our perception of foods and, the researchers point out, show that variation in even a single gene can impact how people perceive an entire family of vegetables.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

Further reports about: Broccoli Thyroid glucosinolates iodine receptor

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>