Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD researchers create roadmap to integrin activation

19.09.2006
Calling it an important technical advance in the study of the complex receptors and pathways of the body's cellular system, researchers at the University of California, San Diego (UCSD) School of Medicine have reconstructed the signaling pathways that impact activation of a receptor that is critical to the control of bleeding and to the thrombosis that occurs in heart attacks and strokes.

Their work to take apart and re-build the signaling pathway that regulates activation of the body's most abundant platelet receptor, an integrin called glycoprotein (GP) IIb-IIIa, provides a powerful and flexible tool for studying therapeutic targets along the pathway that impacts the activation process. This activation leads to changes in the cells' surface receptors – changes that enable platelets to bind to the wall of blood vessels and to one another.

"The road map of the activation pathway could lead to the development of new antithrombotic drugs or treatments for inflammatory diseases. In addition, the ability to engineer these activation pathways may contribute to efforts to develop artificial platelets or leukocytes that could be used in patients with suppressed bone marrow function, for example," said Mark H. Ginsberg, M.D., professor of Medicine at the UCSD School of Medicine. The study will be published on line in Current Biology on September 19.

Integrins are a large family of adhesion molecules that promote stable interactions between cells and their environment. The integrins also act as cellular sensor and signaling molecules, transferring information between the inside and outside of a cell at plasma membrane sites.

Platelets stop the body's bleeding by sticking to one another. When a patient experiences a heart attack or stroke, the platelets stick inappropriately, clumping together and blocking the blood vessel. A signal from inside the platelet to the outside tells the GPIIb-IIIa integrin on the cell's surface to get sticky.

Direct inhibitors of GPIIb-IIIa binding include antithrombotics such as eptifibatide (Integrelin), abciximab (Reopro), and tirofiban (Aggrestat), drugs that reduce thrombosis, or formation of blood clots, by binding to the receptors and completely blocking their function. However, long-term administration of similar drugs doesn't work, in part because of the risk of serious bleeding complications in chronic use.

In sharp contrast, drugs such as clopidogrel (Plavix) and aspirin are two examples of antithrombotics that work well in chronic administration and are widely used for this purpose.

"Drugs such as aspirin and clopidogrel work in large part by blocking the activation of GPIIb-IIIa. These drugs don't work directly on GPIIb-IIIa, but do block signaling pathways that indirectly contribute to GPIIb-IIIa activation. Thus, they achieve a chronic anti-thrombotic effect with acceptable risk of bleeding ," said Ginsberg. He and his colleagues asked themselves if there was another way to block the receptors, by working at the step of activation when the receptors change from non-sticky to sticky – in other words, by blocking the ability of GPIIb-IIIa to activate.

"Up until now, scientists have had a limited understanding of the pathways leading to platelet integrin activation, though we have developed a long list of what might impact the activation process," said Ginsberg. When cultured cells were engineered to express GPIIb-IIIa, agents that usually activated the platelet integrin failed to do so. The UCSD researchers realized that there was something missing, something special about platelets that impacted the activation process.

In 2003, Ginsberg, and Sanford Shattil, M.D., UCSD professor of medicine and Chief of Hematology/Oncology, and colleagues published a paper in the journal Science about the discovery that talin – a large cytoplasmic protein that binds to the inside of an integrin or family of integrins – delivers the critical activation signal. Talin is very important in the linkage between a cell's cytoskeleton and integrins, linkages that cells use to migrate, for example. They noticed that platelets a have much higher concentration of talin that most other cells in the body.

"Talin binding seems to be what throws the activation switch," Ginsberg said. "By adding controllable amounts of talin and the enzyme protein kinase C – an enzyme that modifies other proteins – we found we can get the cell to respond to certain agents that, in turn, activate platelet integrin GPIIb-IIIa."

Using a synthetic approach, the scientists engineered an integrin-activated pathway. By adding protein kinase C, talin or mutants to manipulate the system, they hope to define and map sites where known drugs work, and discover targets along the pathway for new drugs.

"If you think of these pathways as interstate highways on a map, this study now enables us to see other back roads that lead to the destination," said Ginsberg.

Talin is also critical for activation of related integrins, such as those on white blood cells. In these cells, activation of integrins is a critical step in the sticking and migration of white blood cells required for inflammation in diseases such as rheumatoid arthritis and inflammatory bowel disease.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: GPIIb-IIIa Ginsberg Integrin UCSD antithrombotic bleeding platelet receptor talin

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>