Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure determined for key molecular complex involved in long-term gene storage

19.09.2006
Genome-management system seen as a natural protection against cancer

Around the home, regularly used tools are generally kept close at hand: a can opener in a kitchen drawer, a broom in the hall closet. Less frequently used tools are more likely to be stored in less accessible locations, out of immediate reach, perhaps in the basement or garage. And hazardous tools might even be kept under lock and key.

Similarly, the human genome has developed a set of sophisticated mechanisms for keeping selected genes readily available for use while other genes are kept securely stored away for long periods of time, sometimes forever. Candidate genes for such long-term storage include those required only for early development and proliferation, potentially dangerous genes that could well trigger cancers and other disorders should they be reactivated later in life. Cancer researchers and others have been eager to learn more about the molecules that direct this all-important system for managing the genome.

Now, researchers at The Wistar Institute and Fox Chase Cancer Center have successfully determined the three-dimensional structure of a key two-molecule complex involved in long-term gene storage, primarily in cells that have ceased proliferating, or growing. The study also sheds light on a related two-molecule complex that incorporates one member of the molecular pair, but with a different partner. This second complex is involved in storing genes in a more accessible way in cells that continue to grow. A report on the team's findings, published online on September 17, will appear in the October issue of Nature Structural and Molecular Biology.

... more about:
»Asf1 »Chromatin »Key »Molecular »Molecules

"The two-molecule complex we studied is pivotal for protecting certain genes from expression, genes that could cause problems if they were activated," says Ronen Marmorstein, Ph.D., a professor in the Gene Expression and Regulation Program at Wistar and one of the two senior authors on the study. "This is the first time we've been able to see the structure of these molecules communicating and interacting with each other, and it provides important insights into their function."

"By defining some of the rules that dictate how these complexes are formed and operate, we have revealed a part of the difference between growing and non-growing cells," says Peter D. Adams, Ph.D., an associate member in the Basic Science Division at Fox Chase and the other senior author on the study. "This difference is crucial to the distinction between normal and cancerous cells and may inform our ability to treat this disease."

The molecular complex studied by the scientists governs the assembly of an especially condensed form of chromatin, the substructure of chromosomes. The complex is called a histone chaperone complex, responsible for inserting the appropriate histones into the correct locations within the chromatin. Histones are relatively small proteins around which DNA is coiled to create structures called nucleosomes. Compact strings of nucleosomes, then, form into chromatin.

"There are more and less condensed forms of chromatin," explains Marmorstein. "The less condensed forms correlate with more gene expression, and the more condensed forms involve DNA that's buried away and is not transcribed."

"Appropriate packaging of the DNA in the cell nucleus is crucial for proper functioning of the cell and suppression of disease states, such as cancer," says Adams.

An unanticipated observation from the study centers on the region of association between the two molecules in the complex. The researchers knew that one of the two molecules in the complex, called ASF1, associated with a particular molecular partner, HIRA, when directing assembly of the more condensed form of chromatin. But it could also associate with a different partner, called CAF1, to shepherd assembly of the less condensed form of chromatin.

On closer study, the scientists discovered that HIRA and CAF1 have nearly identical structural motifs in the regions of interaction with ASF1. This means that ASF1 can bind to one or the other molecular partner, but not to both. In other words, the interaction is mutually exclusive: A kind of decision is made by ASF1 as to whether to guide the assembly process towards the more or less condensed forms of chromatin. What determines the choice? The relevant factors are unknown for now.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.org

Further reports about: Asf1 Chromatin Key Molecular Molecules

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>