Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure determined for key molecular complex involved in long-term gene storage

19.09.2006
Genome-management system seen as a natural protection against cancer

Around the home, regularly used tools are generally kept close at hand: a can opener in a kitchen drawer, a broom in the hall closet. Less frequently used tools are more likely to be stored in less accessible locations, out of immediate reach, perhaps in the basement or garage. And hazardous tools might even be kept under lock and key.

Similarly, the human genome has developed a set of sophisticated mechanisms for keeping selected genes readily available for use while other genes are kept securely stored away for long periods of time, sometimes forever. Candidate genes for such long-term storage include those required only for early development and proliferation, potentially dangerous genes that could well trigger cancers and other disorders should they be reactivated later in life. Cancer researchers and others have been eager to learn more about the molecules that direct this all-important system for managing the genome.

Now, researchers at The Wistar Institute and Fox Chase Cancer Center have successfully determined the three-dimensional structure of a key two-molecule complex involved in long-term gene storage, primarily in cells that have ceased proliferating, or growing. The study also sheds light on a related two-molecule complex that incorporates one member of the molecular pair, but with a different partner. This second complex is involved in storing genes in a more accessible way in cells that continue to grow. A report on the team's findings, published online on September 17, will appear in the October issue of Nature Structural and Molecular Biology.

... more about:
»Asf1 »Chromatin »Key »Molecular »Molecules

"The two-molecule complex we studied is pivotal for protecting certain genes from expression, genes that could cause problems if they were activated," says Ronen Marmorstein, Ph.D., a professor in the Gene Expression and Regulation Program at Wistar and one of the two senior authors on the study. "This is the first time we've been able to see the structure of these molecules communicating and interacting with each other, and it provides important insights into their function."

"By defining some of the rules that dictate how these complexes are formed and operate, we have revealed a part of the difference between growing and non-growing cells," says Peter D. Adams, Ph.D., an associate member in the Basic Science Division at Fox Chase and the other senior author on the study. "This difference is crucial to the distinction between normal and cancerous cells and may inform our ability to treat this disease."

The molecular complex studied by the scientists governs the assembly of an especially condensed form of chromatin, the substructure of chromosomes. The complex is called a histone chaperone complex, responsible for inserting the appropriate histones into the correct locations within the chromatin. Histones are relatively small proteins around which DNA is coiled to create structures called nucleosomes. Compact strings of nucleosomes, then, form into chromatin.

"There are more and less condensed forms of chromatin," explains Marmorstein. "The less condensed forms correlate with more gene expression, and the more condensed forms involve DNA that's buried away and is not transcribed."

"Appropriate packaging of the DNA in the cell nucleus is crucial for proper functioning of the cell and suppression of disease states, such as cancer," says Adams.

An unanticipated observation from the study centers on the region of association between the two molecules in the complex. The researchers knew that one of the two molecules in the complex, called ASF1, associated with a particular molecular partner, HIRA, when directing assembly of the more condensed form of chromatin. But it could also associate with a different partner, called CAF1, to shepherd assembly of the less condensed form of chromatin.

On closer study, the scientists discovered that HIRA and CAF1 have nearly identical structural motifs in the regions of interaction with ASF1. This means that ASF1 can bind to one or the other molecular partner, but not to both. In other words, the interaction is mutually exclusive: A kind of decision is made by ASF1 as to whether to guide the assembly process towards the more or less condensed forms of chromatin. What determines the choice? The relevant factors are unknown for now.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.org

Further reports about: Asf1 Chromatin Key Molecular Molecules

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>