Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure determined for key molecular complex involved in long-term gene storage

19.09.2006
Genome-management system seen as a natural protection against cancer

Around the home, regularly used tools are generally kept close at hand: a can opener in a kitchen drawer, a broom in the hall closet. Less frequently used tools are more likely to be stored in less accessible locations, out of immediate reach, perhaps in the basement or garage. And hazardous tools might even be kept under lock and key.

Similarly, the human genome has developed a set of sophisticated mechanisms for keeping selected genes readily available for use while other genes are kept securely stored away for long periods of time, sometimes forever. Candidate genes for such long-term storage include those required only for early development and proliferation, potentially dangerous genes that could well trigger cancers and other disorders should they be reactivated later in life. Cancer researchers and others have been eager to learn more about the molecules that direct this all-important system for managing the genome.

Now, researchers at The Wistar Institute and Fox Chase Cancer Center have successfully determined the three-dimensional structure of a key two-molecule complex involved in long-term gene storage, primarily in cells that have ceased proliferating, or growing. The study also sheds light on a related two-molecule complex that incorporates one member of the molecular pair, but with a different partner. This second complex is involved in storing genes in a more accessible way in cells that continue to grow. A report on the team's findings, published online on September 17, will appear in the October issue of Nature Structural and Molecular Biology.

... more about:
»Asf1 »Chromatin »Key »Molecular »Molecules

"The two-molecule complex we studied is pivotal for protecting certain genes from expression, genes that could cause problems if they were activated," says Ronen Marmorstein, Ph.D., a professor in the Gene Expression and Regulation Program at Wistar and one of the two senior authors on the study. "This is the first time we've been able to see the structure of these molecules communicating and interacting with each other, and it provides important insights into their function."

"By defining some of the rules that dictate how these complexes are formed and operate, we have revealed a part of the difference between growing and non-growing cells," says Peter D. Adams, Ph.D., an associate member in the Basic Science Division at Fox Chase and the other senior author on the study. "This difference is crucial to the distinction between normal and cancerous cells and may inform our ability to treat this disease."

The molecular complex studied by the scientists governs the assembly of an especially condensed form of chromatin, the substructure of chromosomes. The complex is called a histone chaperone complex, responsible for inserting the appropriate histones into the correct locations within the chromatin. Histones are relatively small proteins around which DNA is coiled to create structures called nucleosomes. Compact strings of nucleosomes, then, form into chromatin.

"There are more and less condensed forms of chromatin," explains Marmorstein. "The less condensed forms correlate with more gene expression, and the more condensed forms involve DNA that's buried away and is not transcribed."

"Appropriate packaging of the DNA in the cell nucleus is crucial for proper functioning of the cell and suppression of disease states, such as cancer," says Adams.

An unanticipated observation from the study centers on the region of association between the two molecules in the complex. The researchers knew that one of the two molecules in the complex, called ASF1, associated with a particular molecular partner, HIRA, when directing assembly of the more condensed form of chromatin. But it could also associate with a different partner, called CAF1, to shepherd assembly of the less condensed form of chromatin.

On closer study, the scientists discovered that HIRA and CAF1 have nearly identical structural motifs in the regions of interaction with ASF1. This means that ASF1 can bind to one or the other molecular partner, but not to both. In other words, the interaction is mutually exclusive: A kind of decision is made by ASF1 as to whether to guide the assembly process towards the more or less condensed forms of chromatin. What determines the choice? The relevant factors are unknown for now.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.org

Further reports about: Asf1 Chromatin Key Molecular Molecules

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>