Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prozac exposure found to disrupt mussel reproduction

19.09.2006
Researchers from the National Institute of Standards and Technology (NIST) and North Carolina State University (NCSW) have demonstrated that a commonly prescribed antidepressant can interfere with the reproductive cycle of freshwater mussels--at least in a controlled setting.

The research, presented this week at the national meeting of the American Chemical Society*, was conducted to better understand the environmental impact of pharmaceuticals in waste water.

More and more studies are turning up evidence of common drugs and their breakdown products in the nation's waterways (see NIST Tech Beat, www.nist.gov/

public_affairs/techbeat/tb2005_1222.htm#drugs), raising concerns about potential health impacts for both humans and animals from low-level but continuous exposure to the chemicals. NIST and NCSU researchers at the Hollings Marine Laboratory (Charleston, S.C.) examined the effect of fluoxetine, a selective serotonin reuptake inhibitor (SSRI) on a native freshwater mussel (Elliptio complanata). Fluoxetine, sold under the trade name ProzacTM, is one of the most heavily prescribed antidepressants in the United States. In humans, it acts to increase the levels of serotonin at nerve synapses, relieving depression and associated illnesses. But for a number of aquatic species, serotonin moderates the reproductive system--and has been used to artificially induce spawning in bivalves.

At laboratory test concentrations, they found, fluoxetine caused female mussels carrying larvae to release them prematurely, and often, before they were viable, disrupting their reproductive cycle. Approximately 70 percent of the almost 300 species of North American freshwater mussels are considered vulnerable to extinction or already extinct.

The finding also raises questions about the effect of fluoxetine on other aquatic species that share similar endocrine mechanisms. The research team currently is gathering environmental samples from local waters and sediments to compare environmental concentrations with their findings.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov
http://www.nist.gov/public_affairs/techbeat/tb2005_1222.htm#drugs

Further reports about: Environmental Serotonin fluoxetine mussel reproductive

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>