Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Newly discovered behavior in cancer cells signals dangerous metastasis

The most aggressively malignant cancer cells have a "toggle switch" that enables them to morph into highly mobile cells that invade other tissues and then nest comfortably in their new surroundings, a new study in rats suggests.

This picture of how cancer cells shift between two alternating states -- travelers and nesters -- represents a new understanding of how cancer metastasizes, or spreads to other parts of the body, said the Duke Comprehensive Cancer Center researchers who conducted the study.

"Understanding this toggle switch might ultimately enable scientists to find ways to stop cells from metastasizing, which is the most deadly trait of cancer," said the study's lead investigator, Mariano Garcia-Blanco, M.D., Ph.D., professor of molecular genetics and microbiology.

The researchers will publish their findings in the Sept. 19, 2006, issue of the journal Proceedings of the National Academy of Sciences, now available on line. The research was funded by the National Cancer Institute.

Until now, scientists have believed that cancer cells must transform permanently from stationary epithelial cells into migratory mesenchymal cells in order to metastasize.

The Duke team discovered that highly malignant cells are equal parts epithelial and mesenchymal, transitioning between the two as their surroundings necessitate. The proteins that the cell produces dictate which way the cell shifts.

In a classic example of survival of the fittest, a cancer cell's ability to toggle between epithelial and mesenchymal enables the most malignant cells to aggressively invade and then peacefully adapt in unfamiliar territory, the scientists said.

"The prevailing notion has been that the more mesenchymal the cancer cells, the more mobile and metastatic they would be," Garcia-Blanco said. "In reality, aggressive cancer cells are not homogenous, but are extremely versatile in their ability to adapt as their survival needs shift."

The researchers discovered this transition in cancer cells when they observed an error in "alternative splicing," a key element of the genetic copying program inside cells. Alternative splicing determines how the DNA is chopped into pieces and then reassembled. The order in which DNA is reassembled determines which proteins the gene produces.

In cancer cells, the splicing machinery goes awry -- as do myriad functions within the cells. When the splicing process proceeds one way, the cells become mesenchymal. Spliced another way, the cells turn epithelial.

To determine which way a cancer cell would turn, the scientists constructed a fluorescent "reporter" -- a protein that illuminates if the cell turns epithelial but lies dormant if the cell reverts to mesenchymal state.

By following the reporter's illumination within cancer cells in rats, the team viewed the very process of alternative splicing as it occurred in the tumors. The researchers were able to visualize specific portions of DNA, called exons, to see if they were included or excluded in the splicing process as the cell transformed.

"We found that the regulation of alternative splicing is different in mesenchymal versus epithelial cells," Garcia-Blanco said. "A particular exon, FGFR2 IIIc, is silenced in mesenchymal cells but is active in epithelial cells.

"We can visualize the genes as they are dynamically changing," he said. "We can define the cell types by observing their splicing patterns."

According to Garcia-Blanco, the cellular switch that is believed to guide the regulation of splicing is a protein called Fox. Both mesenchymal and epithelial cells produce Fox, but the protein is active only in epithelial cells, Garcia-Blanco said.

Fox also may have an accomplice or "co-factor" in or around epithelial cells that prompts it to activate, the researchers said. They speculate that this co-factor could be activated by contact with stroma --the supporting structural cells of a tumor -- because the stroma is where the majority of epithelial-type cancer cells were observed. Their heavy presence implies that the stroma may have induced the cancer cells to revert to epithelial when they reached a new destination, so they could stabilize to populate a new tumor site.

"Our findings validate that tumors are highly complex in their behavior and don't necessarily need a gene mutation to alter their behavior," said Sebastian Oltean, M.D., Ph.D., research associate and first author of the journal article.

"Alterations in gene splicing can be much more subtle in nature but still have a major impact on the cancer cell and can be targets of therapy."

The team's next step is to determine precisely what controls the toggle mechanism in cancer cells, Garcia-Blanco said. Identifying the various steps that occur during the natural progression of tumors could lead to therapies for blocking metastasis, he said.

Rebecca Levine | EurekAlert!
Further information:

Further reports about: Garcia-Blanco discovered epithelial mesenchymal splicing

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>