Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fatty acids and caveolin-1 are essential in liver regeneration

19.09.2006
Liver regulates lipid, carbohydrate and protein metabolism. It also segregates a number of proteins and enzymes, and eliminates toxic substances from the organism. Liver regeneration is a mostly unknown process at a molecular level, although it is essential for the good functioning of the liver, and indispensable in order to carry out some therapeutic strategies, such as living-donor transplant.
The journal Science [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids

=16973879&query_hl=1&itool=pubmed_docsum] publishes in its next issue a research article where researchers from IDIBAPS, in collaboration with Universitat de Barcelona (UB) and Queensland University (Australia) discover the importance of caveolin-1 in liver regeneration. Without this protein, regeneration does not occur. This research work has been directed by Dr. Albert Pol, one of the first researchers with a Ramón y Cajal contract; and Dr. Carles Enrich, from the Department of Cell Biology and Pathological Anatomy from the Faculty of Medicine of the UB. The first signatories of this article are Manuel A. Fernández and Cecilia Albor.

Stem cells do not participate in liver regeneration, but hepatocytes, cells of the liver tissue, are able to regain their division capacity when needed. In a normal liver, hepatocytes do not divide, but during regeneration, all liver cells duplicate at least once. For this system to function, a fine regulation system is needed, permitting the hepatocyte to accumulate energetic reserves in the form of lipid accumulations, and starting the genetic machinery for division. IDIBAPS researchers studied the role of caveolin-1 in this process, comparing the regenerative capacity of normal mice and modified mice, which do not express the caveolin-1 gene. Both types of mice were extirpated 70% of their liver mass, and differences in regeneration process were analysed through microscopic and molecular techniques.

... more about:
»Caveolin-1 »Regeneration »hepatocyte »liver

During the first stages of regeneration, liver cells accumulate a large amount of lipids in structures called lipidic bodies, whose importance was until today unknown. This study published in Science demonstrates that the energy needed in liver regeneration comes from lipids accumulated in liver cells during the first hours of the process. Genetically modified mice, not expressing caveolin-1, were incapable of forming the lipidic bodies necessary in order to provide energy for the regeneration. After 48 hours of the extraction of a part of the liver, the mortality of modified mice increased, and, after 72 hours, only 22% survived, whereas normal mice survived in 89% of cases. Similar results were obtained by avoiding caveolin-1 expression with the interference RNA technique, and the administration of glucose in mice without caveolin allowed them to have an alternative energy source and were able to regenerate liver with more normality.

Summarising, this work makes two important contributions: On the one hand, it reveals the main vital function of lipid bodies and caveolin. This is a protein linked to the storage of lipids and cell cycle, but a situation where its presence is indispensable for the survival of experimental animals has been described in this study for the first time. On the other hand, the article published in Science demonstrates that lipids can be the fuel for cell division, whereas until today, it was assumed that glucose was its first energy source. This discovery could explain why steatosis, a disease where an excessive accumulation of lipids in the liver, is considered a risk factor for the apparition of hepatocellular tumours. The excessive accumulation of lipids in the hepatocyte, as a consequence of excessive consumption of nutrients, obesity, type-2 diabetes or due to a bad liver functioning, affects in several degrees up to two thirds of the population in developed countries. Our researchers claim that an excess of lipid could represent for these cells an energy source sufficient to proliferate inadequately and, thus, to develop hepatic tumours.

Àlex Argemí Saburit | alfa
Further information:
http://www.idibaps.ub.edu

Further reports about: Caveolin-1 Regeneration hepatocyte liver

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>