Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fatty acids and caveolin-1 are essential in liver regeneration

19.09.2006
Liver regulates lipid, carbohydrate and protein metabolism. It also segregates a number of proteins and enzymes, and eliminates toxic substances from the organism. Liver regeneration is a mostly unknown process at a molecular level, although it is essential for the good functioning of the liver, and indispensable in order to carry out some therapeutic strategies, such as living-donor transplant.
The journal Science [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids

=16973879&query_hl=1&itool=pubmed_docsum] publishes in its next issue a research article where researchers from IDIBAPS, in collaboration with Universitat de Barcelona (UB) and Queensland University (Australia) discover the importance of caveolin-1 in liver regeneration. Without this protein, regeneration does not occur. This research work has been directed by Dr. Albert Pol, one of the first researchers with a Ramón y Cajal contract; and Dr. Carles Enrich, from the Department of Cell Biology and Pathological Anatomy from the Faculty of Medicine of the UB. The first signatories of this article are Manuel A. Fernández and Cecilia Albor.

Stem cells do not participate in liver regeneration, but hepatocytes, cells of the liver tissue, are able to regain their division capacity when needed. In a normal liver, hepatocytes do not divide, but during regeneration, all liver cells duplicate at least once. For this system to function, a fine regulation system is needed, permitting the hepatocyte to accumulate energetic reserves in the form of lipid accumulations, and starting the genetic machinery for division. IDIBAPS researchers studied the role of caveolin-1 in this process, comparing the regenerative capacity of normal mice and modified mice, which do not express the caveolin-1 gene. Both types of mice were extirpated 70% of their liver mass, and differences in regeneration process were analysed through microscopic and molecular techniques.

... more about:
»Caveolin-1 »Regeneration »hepatocyte »liver

During the first stages of regeneration, liver cells accumulate a large amount of lipids in structures called lipidic bodies, whose importance was until today unknown. This study published in Science demonstrates that the energy needed in liver regeneration comes from lipids accumulated in liver cells during the first hours of the process. Genetically modified mice, not expressing caveolin-1, were incapable of forming the lipidic bodies necessary in order to provide energy for the regeneration. After 48 hours of the extraction of a part of the liver, the mortality of modified mice increased, and, after 72 hours, only 22% survived, whereas normal mice survived in 89% of cases. Similar results were obtained by avoiding caveolin-1 expression with the interference RNA technique, and the administration of glucose in mice without caveolin allowed them to have an alternative energy source and were able to regenerate liver with more normality.

Summarising, this work makes two important contributions: On the one hand, it reveals the main vital function of lipid bodies and caveolin. This is a protein linked to the storage of lipids and cell cycle, but a situation where its presence is indispensable for the survival of experimental animals has been described in this study for the first time. On the other hand, the article published in Science demonstrates that lipids can be the fuel for cell division, whereas until today, it was assumed that glucose was its first energy source. This discovery could explain why steatosis, a disease where an excessive accumulation of lipids in the liver, is considered a risk factor for the apparition of hepatocellular tumours. The excessive accumulation of lipids in the hepatocyte, as a consequence of excessive consumption of nutrients, obesity, type-2 diabetes or due to a bad liver functioning, affects in several degrees up to two thirds of the population in developed countries. Our researchers claim that an excess of lipid could represent for these cells an energy source sufficient to proliferate inadequately and, thus, to develop hepatic tumours.

Àlex Argemí Saburit | alfa
Further information:
http://www.idibaps.ub.edu

Further reports about: Caveolin-1 Regeneration hepatocyte liver

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>