Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New boost for systems biology includes cash for knowledge transfer

19.09.2006
Systems biology, the multidisciplinary approach that tackles bioscience problems by bringing together experimental and theoretical techniques, has been boosted by the announcement of two new initiatives, together worth over £35M, by the Biotechnology and Biological Sciences Research Council (BBSRC). The initiatives are designed to fund a range of projects in universities and institutes and encourage UK bioindustries to tap into the world-class expertise and facilities in the BBSRC systems biology community.

BBSRC and the Engineering and Physical Sciences Research Council (EPSRC) have committed at least £30M to a new Systems Approaches to Biological Research Initiative to further establish systems biology research in universities and institutes. The initiative aims to fund a range of systems biology research to investigate strategically important bioscience problems within BBSRC’s remit. The new projects, to be funded in 2007, will build on the £43.6M investment BBSRC and EPSRC have made in six university-based systems biology centres over the last two years.

Researchers from the six established centres are being invited to participate in the second new initiative, worth a total of £5M, which aims to help UK bioindustries exploit the cutting edge expertise and facilities in the centres. The Exploiting Systems Biology LINK Initiative is aimed at researchers at the systems biology centres and will allow them to work with industrial collaborators to use systems biology to address problems relevant to end-users. In common with all LINK initiatives, the industrial partners are required to contribute at least 50 per cent of full cost of each project. BBSRC is committing £2.5M to the initiative.

Professor Julia Goodfellow, BBSRC Chief Executive, said: “For several years BBSRC has highlighted the shift in the biosciences towards more predictive and quantitative approaches. These initiatives, together with the systems biology centres, represent an investment of over £85M and demonstrate that BBSRC is determined to maintain the UK’s world-class bioscience research base. It is particularly exciting to launch a new LINK initiative that will encourage researchers and industry to harness powerful systems biology tools to generate real-world applications.”

... more about:
»BioScience »Biology »EPSRC

Professor John O'Reilly, EPSRC Chief Executive, commented: "EPSRC has been pleased to work with BBSRC on Systems Approaches to Biological Research and the systems biology centres, recognising the vital contribution techniques and researchers from the physical sciences and engineering have to make to this important developing area of interdisciplinary research. Our shared investments should provide an excellent platform for this further initiative by BBSRC."

Systems biology means revolutionising the way bioscientists think and work by enabling multidisciplinary research combining theory, computer modelling and experiments. Integrative systems biology will make the outputs of biological research more useful and easier to apply to policy makers and industry, as well as providing completely new ways of understanding biological processes. A key feature is ‘predictive biology’ – developing models based on using experimental data to optimize the next hypothesise to be tested. The final goal of a predictive approach is to develop a mathematical model which can be used to understand the system being studied.

BBSRC and EPSRC have together funded six new Centres for Integrative Systems Biology since 2005. The centres, at the universities of Edinburgh, Manchester, Newcastle, Nottingham and Oxford and Imperial College London, are using systems approaches to investigate bioscience questions that include circadian rhythms, complex plant root models, ageing and disease.

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: BioScience Biology EPSRC

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>