Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can a spoonful of sugar treat cancer?

19.09.2006
A leading Yorkshire scientist is trying to develop new drugs by synthesising different forms of the special sugars found in cancer cells. Now, with support from the Association for International Cancer Research (AICR), Dr Robert Falconer will be using his discovery to search for new molecules to stop disease spread.

Dr Falconer, a Lecturer in Medicinal Chemistry based in the Institute of Cancer Therapeutics at the University of Bradford explains: “On the surface of cancer cells there is a long molecule, called polysialic acid, which is made up of about 200 identical simple sugars linked together.

“Polysialic acid has been found on the surface of a number of different human cancers. When these cancer cells start to spread, they appear to get more polysialic acid on their surface. We believe that this helps these cells ‘unstick’ from their neighbouring cells, so they can start invading the surrounding tissues and moving away from the original tumour.

“Our idea is quite simple. If we can stop these cancer cells making so much polysialic acid, they won’t find it so easy to spread. Cancers that don’t spread, or only spread slowly, are less dangerous and are easier to cure.”

... more about:
»Cancer »Falconer »acid »cancer cells »polysialic

Dr Mark Matfield, AICR’s scientific adviser says the surface of cells carries a complex mixture of proteins and sugars. “In the past, most scientific attention has been directed at the differences in the proteins but Dr Falconer is particularly interested in the differences in the sugars found on cancer cells.

“The long molecules of polysialic acid are built up by adding one simple sugar, called sialic acid, at a time to the growing molecule. Dr Falconer will use altered versions of the sialic acid molecule to block the enzymes that build these long polysialic acid molecules.”

Dr Falconer has already made several variations of the normal sialic acid molecule. He will chemically synthesise many other different varieties of these unnatural sugars and, with colleagues at the Institute, will test their ability to block the enzymes that build polysialic acid.

Initially, these tests will be carried out using purified versions of these enzymes. Those molecules that are found to block polysialic acid synthesis will then be tested directly on cancer cells growing in the laboratory, to make sure that they have the same effect on the cells. The final stage of the project will be to find out if these molecules, which stop cancer cells making polysialic acid, also stop the cells moving and spreading.

Derek Napier, AICR Chief Executive, says the charity has awarded a three-year research grant of £142,000 to Dr Falconer, which should enable him to identify a number of molecules that block cancer cell spreading. “This is an exciting project and is given in line with AICR’s policy of funding the most novel approaches to research worldwide.

“However, there will need to be further analyses and testing – taking several more years - before it is known whether these molecules will make effective drugs to help treat cancer.”

Emma Banks | alfa
Further information:
http://www.bradford.ac.uk

Further reports about: Cancer Falconer acid cancer cells polysialic

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>