Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can a spoonful of sugar treat cancer?

19.09.2006
A leading Yorkshire scientist is trying to develop new drugs by synthesising different forms of the special sugars found in cancer cells. Now, with support from the Association for International Cancer Research (AICR), Dr Robert Falconer will be using his discovery to search for new molecules to stop disease spread.

Dr Falconer, a Lecturer in Medicinal Chemistry based in the Institute of Cancer Therapeutics at the University of Bradford explains: “On the surface of cancer cells there is a long molecule, called polysialic acid, which is made up of about 200 identical simple sugars linked together.

“Polysialic acid has been found on the surface of a number of different human cancers. When these cancer cells start to spread, they appear to get more polysialic acid on their surface. We believe that this helps these cells ‘unstick’ from their neighbouring cells, so they can start invading the surrounding tissues and moving away from the original tumour.

“Our idea is quite simple. If we can stop these cancer cells making so much polysialic acid, they won’t find it so easy to spread. Cancers that don’t spread, or only spread slowly, are less dangerous and are easier to cure.”

... more about:
»Cancer »Falconer »acid »cancer cells »polysialic

Dr Mark Matfield, AICR’s scientific adviser says the surface of cells carries a complex mixture of proteins and sugars. “In the past, most scientific attention has been directed at the differences in the proteins but Dr Falconer is particularly interested in the differences in the sugars found on cancer cells.

“The long molecules of polysialic acid are built up by adding one simple sugar, called sialic acid, at a time to the growing molecule. Dr Falconer will use altered versions of the sialic acid molecule to block the enzymes that build these long polysialic acid molecules.”

Dr Falconer has already made several variations of the normal sialic acid molecule. He will chemically synthesise many other different varieties of these unnatural sugars and, with colleagues at the Institute, will test their ability to block the enzymes that build polysialic acid.

Initially, these tests will be carried out using purified versions of these enzymes. Those molecules that are found to block polysialic acid synthesis will then be tested directly on cancer cells growing in the laboratory, to make sure that they have the same effect on the cells. The final stage of the project will be to find out if these molecules, which stop cancer cells making polysialic acid, also stop the cells moving and spreading.

Derek Napier, AICR Chief Executive, says the charity has awarded a three-year research grant of £142,000 to Dr Falconer, which should enable him to identify a number of molecules that block cancer cell spreading. “This is an exciting project and is given in line with AICR’s policy of funding the most novel approaches to research worldwide.

“However, there will need to be further analyses and testing – taking several more years - before it is known whether these molecules will make effective drugs to help treat cancer.”

Emma Banks | alfa
Further information:
http://www.bradford.ac.uk

Further reports about: Cancer Falconer acid cancer cells polysialic

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>