Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bacteria get off easy in sinus infections

Weakened immune system in chronic sinusitis reveals new treatment targets

Researchers at Johns Hopkins have evidence that curbed activity from several key chemicals on the inner lining of the nose are linked to chronic sinusitis that fails to respond to the usual current treatments.

An estimated 32 million Americans know the misery of persistent inflammation of the moist tissue that lines the nose and sinus cavities. The result is clogged passages and recurring infections, according to the U.S. Centers for Disease Control and Prevention.

Because nearly one in 10 of those treated see symptoms return within weeks or months after drugs or surgery fail to keep the sinus passages open, scientists have long suspected that these resistant cases had some underlying problem with the immune system contributing to the ailment.

... more about:
»Chronic »TLR »inflammation »polyps »receptor »sinusitis

In a study to be described on Sept. 19 at the annual scientific sessions of the American Academy of Otolaryngology, Head and Neck Surgery, the Hopkins team found that in chronic sufferers who failed to respond to treatment, the activity of at least four genes in the body's nasal immune defense system were severely decreased, and their production of two proteins critical to this defense was 20 to 200 times less than normal.

Comparing nasal epithelial cell samples from nine patients who benefited from surgery with nine who did not, the Hopkins team discovered suppressed levels of human beta defensin 2 (HBD2) and mannose binding lectin (MBL) in those whose symptoms returned. The proteins are naturally produced in the nose whenever the immune system detects foreign bacteria or fungi, binding to invading pathogens, inactivating them and making them easily disposed of.

An earlier study published by the same team in the March-April issue of the American Journal of Rhinology also showed that sinus tissue from people with chronic sinusitis that resisted treatment had 30 times lower than normal activity of a so-called toll-like receptor gene, TLR9.

Inside the nose, researchers say, toll-like receptor proteins (TLRs) detect invading bacteria and other pathogens in the air by attaching to their trace byproducts. Once a threat is identified, the receptors stimulate the epithelial cells to produce antibiotic proteins, such as HBD2 and MBL, to fight the invading organisms. This innate response helps prevent airborne bacteria or fungi from settling in the nose and sinus cavities, causing infection.

"Colonization with microorganisms is a common problem in patients with chronic sinusitis and polyps, but the reasons for this are incompletely understood," says Andrew Lane, M.D., an associate professor at The Johns Hopkins University School of Medicine and director of its rhinology and sinus surgery center. "Now we are uncovering new clues as to what might be wrong and perhaps, ultimately, how it might be treated.

"The nose's first line of defense is the epithelium, and when the local innate immune function is curtailed, infections can get a head start, which might serve to worsen the sinus inflammation.

"The potential is there to manipulate these chemical receptors and proteins to see if this makes patients more responsive to conventional therapy," says Lane.

The study, led by Lane, was believed to be the first to determine levels of each TLR - there are 10 - by directly measuring messenger RNA expression in sinusitis patients and those more fortunate to not have it. Scientists have known for more than a year that TLRs were present in both the healthy and sinusitis-wracked nose, but not which receptors or proteins were more important than others in the condition's chronic form. That study involved 30 men and women, mostly from the Baltimore region, who had surgery for chronic sinusitis at Hopkins. (Another 10 had no sinus problem and served as study controls.)

Those who underwent surgery did so after standard therapy using antibiotics, decongestants and steroids had failed to stop their symptoms and keep their infections from coming back. Indeed, 20 participants in the study had developed nasal polyps, which have no known cause and are especially hard to treat, researchers say. They note that polyps must often be surgically removed to allow the sinuses to drain normally.

All patients were monitored for a minimum of six months to see if any symptoms or polyps returned. Thirteen in the surgery group had recurrent inflammation within three months to one year after surgery, while the rest remained symptom free.

The Hopkins team took samples during surgery of the mucous membrane lining the nose, and using real-time polymerase chain reaction, analyzed the samples for any genetic differences between the groups.

"Surgically treating sinusitis is much like plumbing, in the sense that we try to restore normal sinus cavity drainage pathways," adds study presenter Murugappan Ramanathan Jr., M.D., a resident in otolaryngology - head and neck surgery at Hopkins. "But for the intractable cases, surgery may fail because the problem is not so much about plumbing as it is inflammation, and for this we need research at the molecular level to find a solution."

David March | EurekAlert!
Further information:

Further reports about: Chronic TLR inflammation polyps receptor sinusitis

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>