Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria get off easy in sinus infections

18.09.2006
Weakened immune system in chronic sinusitis reveals new treatment targets

Researchers at Johns Hopkins have evidence that curbed activity from several key chemicals on the inner lining of the nose are linked to chronic sinusitis that fails to respond to the usual current treatments.

An estimated 32 million Americans know the misery of persistent inflammation of the moist tissue that lines the nose and sinus cavities. The result is clogged passages and recurring infections, according to the U.S. Centers for Disease Control and Prevention.

Because nearly one in 10 of those treated see symptoms return within weeks or months after drugs or surgery fail to keep the sinus passages open, scientists have long suspected that these resistant cases had some underlying problem with the immune system contributing to the ailment.

... more about:
»Chronic »TLR »inflammation »polyps »receptor »sinusitis

In a study to be described on Sept. 19 at the annual scientific sessions of the American Academy of Otolaryngology, Head and Neck Surgery, the Hopkins team found that in chronic sufferers who failed to respond to treatment, the activity of at least four genes in the body's nasal immune defense system were severely decreased, and their production of two proteins critical to this defense was 20 to 200 times less than normal.

Comparing nasal epithelial cell samples from nine patients who benefited from surgery with nine who did not, the Hopkins team discovered suppressed levels of human beta defensin 2 (HBD2) and mannose binding lectin (MBL) in those whose symptoms returned. The proteins are naturally produced in the nose whenever the immune system detects foreign bacteria or fungi, binding to invading pathogens, inactivating them and making them easily disposed of.

An earlier study published by the same team in the March-April issue of the American Journal of Rhinology also showed that sinus tissue from people with chronic sinusitis that resisted treatment had 30 times lower than normal activity of a so-called toll-like receptor gene, TLR9.

Inside the nose, researchers say, toll-like receptor proteins (TLRs) detect invading bacteria and other pathogens in the air by attaching to their trace byproducts. Once a threat is identified, the receptors stimulate the epithelial cells to produce antibiotic proteins, such as HBD2 and MBL, to fight the invading organisms. This innate response helps prevent airborne bacteria or fungi from settling in the nose and sinus cavities, causing infection.

"Colonization with microorganisms is a common problem in patients with chronic sinusitis and polyps, but the reasons for this are incompletely understood," says Andrew Lane, M.D., an associate professor at The Johns Hopkins University School of Medicine and director of its rhinology and sinus surgery center. "Now we are uncovering new clues as to what might be wrong and perhaps, ultimately, how it might be treated.

"The nose's first line of defense is the epithelium, and when the local innate immune function is curtailed, infections can get a head start, which might serve to worsen the sinus inflammation.

"The potential is there to manipulate these chemical receptors and proteins to see if this makes patients more responsive to conventional therapy," says Lane.

The study, led by Lane, was believed to be the first to determine levels of each TLR - there are 10 - by directly measuring messenger RNA expression in sinusitis patients and those more fortunate to not have it. Scientists have known for more than a year that TLRs were present in both the healthy and sinusitis-wracked nose, but not which receptors or proteins were more important than others in the condition's chronic form. That study involved 30 men and women, mostly from the Baltimore region, who had surgery for chronic sinusitis at Hopkins. (Another 10 had no sinus problem and served as study controls.)

Those who underwent surgery did so after standard therapy using antibiotics, decongestants and steroids had failed to stop their symptoms and keep their infections from coming back. Indeed, 20 participants in the study had developed nasal polyps, which have no known cause and are especially hard to treat, researchers say. They note that polyps must often be surgically removed to allow the sinuses to drain normally.

All patients were monitored for a minimum of six months to see if any symptoms or polyps returned. Thirteen in the surgery group had recurrent inflammation within three months to one year after surgery, while the rest remained symptom free.

The Hopkins team took samples during surgery of the mucous membrane lining the nose, and using real-time polymerase chain reaction, analyzed the samples for any genetic differences between the groups.

"Surgically treating sinusitis is much like plumbing, in the sense that we try to restore normal sinus cavity drainage pathways," adds study presenter Murugappan Ramanathan Jr., M.D., a resident in otolaryngology - head and neck surgery at Hopkins. "But for the intractable cases, surgery may fail because the problem is not so much about plumbing as it is inflammation, and for this we need research at the molecular level to find a solution."

David March | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: Chronic TLR inflammation polyps receptor sinusitis

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>