Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Davis study finds distinct genetic profiles

18.09.2006
Results promise to improve genetic studies of human disease

An international team of scientists lead by researchers at UC Davis Health System has found that, with respect to genetics, modern Europeans fall into two groups: a Northern group and a Southern, or Mediterranean one. The findings, published in the Sept. 14 edition of Public Library of Science Genetics, are important because they provide a method for scientists to take into account European ancestry when looking for genes involved in diseases.

"Until now, little has been known about the distribution of genetic variation in European populations and how much that distribution matters in terms of doing genetic studies," said Michael Seldin, chair of the Rowe Program in Genetics at UC Davis Health System. "Now we will be able to control for these differences in European populations in our efforts to find genes that cause common diseases."

Seldin, who is also a professor of biochemistry and professor of medicine at UC Davis, worked with his colleagues to compare genetic data for 928 individuals. They looked at 5,700 single nucleotide polymorphisms, called SNPs or "snips." SNPs are changes in which a single base in the DNA differs from the usual base at that position. Millions of SNP's have been cataloged in the human genome. Some SNPs cause disease, like the one responsible for sickle cell anemia. Other SNPs are normal variations in the genome. People who share ancestry will have many SNPs in common.

... more about:
»SNP »Seldin »ancestry

Seldin and his group set out to discover which SNPs among Europeans could account for shared common ancestry. "We saw a clustering of individuals that come from either southern Europe or derived from populations that left southern Europe, or the Mediterranean, in the last 2,000 years," Seldin said. This allowed the group to identify a set of 400 informative SNP markers that scientists could now use to control for European ancestry when conducting genetic studies of disease, response to drug treatment, or side effects from therapy.

In addition to future medical applications, the data are also of interest to anthropologists who study historical human migrations. The Southern grouping included individuals from Greece, Italy, Portugal and Spain, as well as Ashkenazi and Sephardic Jews. The Northern group included people with English, Irish, German, Swedish and Ukranian ancestry. These groups correspond to those historically divided by the Pyrenees and Alps mountain ranges.

With respect to population genetics, previous studies have shown that SNPs correlate broadly with continental ancestry, dividing modern humans into four large groups: Asia, Africa, Oceana, America and continental Europe. The new study gives scientists the evidence they need to further subdivide people with European ancestry into the Northern and Southern groups when looking for SNPs that may be involved in disease.

To prove this point, the researchers analyzed two sets of data. They looked at SNPs associated with rheumatoid arthritis and found that, when they corrected for ancestry, several of the genes that were previously believed to be good candidates for being involved in the disease were no longer candidates at all. They also corrected for ancestry in a data set looking at lactose intolerance. "When we did not control for differences in population structure, we got a lot of false associations," Seldin explained.

Seldin and his colleagues will soon be expanding the current European study by looking at 500,000 SNPs. They also have plans for similar studies of other continental populations and for further defining different subpopulations. Seldin said studies of other continents and ethnic groups are necessary if science is to get the most out of the advances made by the Human Genome Project. "The ultimate aim of these studies is to be able to better define subgroups and use this information to eliminate false associations, giving us a better chance of finding true associations for disease genes," Seldin said.

Michael Seldin | EurekAlert!
Further information:
http://www.plos.org
http://roweprogram.ucdavis.edu/

Further reports about: SNP Seldin ancestry

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>