Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Davis study finds distinct genetic profiles

18.09.2006
Results promise to improve genetic studies of human disease

An international team of scientists lead by researchers at UC Davis Health System has found that, with respect to genetics, modern Europeans fall into two groups: a Northern group and a Southern, or Mediterranean one. The findings, published in the Sept. 14 edition of Public Library of Science Genetics, are important because they provide a method for scientists to take into account European ancestry when looking for genes involved in diseases.

"Until now, little has been known about the distribution of genetic variation in European populations and how much that distribution matters in terms of doing genetic studies," said Michael Seldin, chair of the Rowe Program in Genetics at UC Davis Health System. "Now we will be able to control for these differences in European populations in our efforts to find genes that cause common diseases."

Seldin, who is also a professor of biochemistry and professor of medicine at UC Davis, worked with his colleagues to compare genetic data for 928 individuals. They looked at 5,700 single nucleotide polymorphisms, called SNPs or "snips." SNPs are changes in which a single base in the DNA differs from the usual base at that position. Millions of SNP's have been cataloged in the human genome. Some SNPs cause disease, like the one responsible for sickle cell anemia. Other SNPs are normal variations in the genome. People who share ancestry will have many SNPs in common.

... more about:
»SNP »Seldin »ancestry

Seldin and his group set out to discover which SNPs among Europeans could account for shared common ancestry. "We saw a clustering of individuals that come from either southern Europe or derived from populations that left southern Europe, or the Mediterranean, in the last 2,000 years," Seldin said. This allowed the group to identify a set of 400 informative SNP markers that scientists could now use to control for European ancestry when conducting genetic studies of disease, response to drug treatment, or side effects from therapy.

In addition to future medical applications, the data are also of interest to anthropologists who study historical human migrations. The Southern grouping included individuals from Greece, Italy, Portugal and Spain, as well as Ashkenazi and Sephardic Jews. The Northern group included people with English, Irish, German, Swedish and Ukranian ancestry. These groups correspond to those historically divided by the Pyrenees and Alps mountain ranges.

With respect to population genetics, previous studies have shown that SNPs correlate broadly with continental ancestry, dividing modern humans into four large groups: Asia, Africa, Oceana, America and continental Europe. The new study gives scientists the evidence they need to further subdivide people with European ancestry into the Northern and Southern groups when looking for SNPs that may be involved in disease.

To prove this point, the researchers analyzed two sets of data. They looked at SNPs associated with rheumatoid arthritis and found that, when they corrected for ancestry, several of the genes that were previously believed to be good candidates for being involved in the disease were no longer candidates at all. They also corrected for ancestry in a data set looking at lactose intolerance. "When we did not control for differences in population structure, we got a lot of false associations," Seldin explained.

Seldin and his colleagues will soon be expanding the current European study by looking at 500,000 SNPs. They also have plans for similar studies of other continental populations and for further defining different subpopulations. Seldin said studies of other continents and ethnic groups are necessary if science is to get the most out of the advances made by the Human Genome Project. "The ultimate aim of these studies is to be able to better define subgroups and use this information to eliminate false associations, giving us a better chance of finding true associations for disease genes," Seldin said.

Michael Seldin | EurekAlert!
Further information:
http://www.plos.org
http://roweprogram.ucdavis.edu/

Further reports about: SNP Seldin ancestry

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>