Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Davis study finds distinct genetic profiles

18.09.2006
Results promise to improve genetic studies of human disease

An international team of scientists lead by researchers at UC Davis Health System has found that, with respect to genetics, modern Europeans fall into two groups: a Northern group and a Southern, or Mediterranean one. The findings, published in the Sept. 14 edition of Public Library of Science Genetics, are important because they provide a method for scientists to take into account European ancestry when looking for genes involved in diseases.

"Until now, little has been known about the distribution of genetic variation in European populations and how much that distribution matters in terms of doing genetic studies," said Michael Seldin, chair of the Rowe Program in Genetics at UC Davis Health System. "Now we will be able to control for these differences in European populations in our efforts to find genes that cause common diseases."

Seldin, who is also a professor of biochemistry and professor of medicine at UC Davis, worked with his colleagues to compare genetic data for 928 individuals. They looked at 5,700 single nucleotide polymorphisms, called SNPs or "snips." SNPs are changes in which a single base in the DNA differs from the usual base at that position. Millions of SNP's have been cataloged in the human genome. Some SNPs cause disease, like the one responsible for sickle cell anemia. Other SNPs are normal variations in the genome. People who share ancestry will have many SNPs in common.

... more about:
»SNP »Seldin »ancestry

Seldin and his group set out to discover which SNPs among Europeans could account for shared common ancestry. "We saw a clustering of individuals that come from either southern Europe or derived from populations that left southern Europe, or the Mediterranean, in the last 2,000 years," Seldin said. This allowed the group to identify a set of 400 informative SNP markers that scientists could now use to control for European ancestry when conducting genetic studies of disease, response to drug treatment, or side effects from therapy.

In addition to future medical applications, the data are also of interest to anthropologists who study historical human migrations. The Southern grouping included individuals from Greece, Italy, Portugal and Spain, as well as Ashkenazi and Sephardic Jews. The Northern group included people with English, Irish, German, Swedish and Ukranian ancestry. These groups correspond to those historically divided by the Pyrenees and Alps mountain ranges.

With respect to population genetics, previous studies have shown that SNPs correlate broadly with continental ancestry, dividing modern humans into four large groups: Asia, Africa, Oceana, America and continental Europe. The new study gives scientists the evidence they need to further subdivide people with European ancestry into the Northern and Southern groups when looking for SNPs that may be involved in disease.

To prove this point, the researchers analyzed two sets of data. They looked at SNPs associated with rheumatoid arthritis and found that, when they corrected for ancestry, several of the genes that were previously believed to be good candidates for being involved in the disease were no longer candidates at all. They also corrected for ancestry in a data set looking at lactose intolerance. "When we did not control for differences in population structure, we got a lot of false associations," Seldin explained.

Seldin and his colleagues will soon be expanding the current European study by looking at 500,000 SNPs. They also have plans for similar studies of other continental populations and for further defining different subpopulations. Seldin said studies of other continents and ethnic groups are necessary if science is to get the most out of the advances made by the Human Genome Project. "The ultimate aim of these studies is to be able to better define subgroups and use this information to eliminate false associations, giving us a better chance of finding true associations for disease genes," Seldin said.

Michael Seldin | EurekAlert!
Further information:
http://www.plos.org
http://roweprogram.ucdavis.edu/

Further reports about: SNP Seldin ancestry

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>