Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical tests of cell growth enter third dimension

18.09.2006
Ohio State University researchers have developed two new technologies for measuring cell growth in the laboratory.

The first patent-pending technology provides a way for researchers to easily tell if cancer cells in the laboratory are responding to an anti-cancer drug. The second -- because it tests several sets of cells at once -- allows for the simultaneous testing of different dosages, or the effect of a single drug on different kinds of cells taken from the body.

Shang-Tian Yang, professor of chemical and biomolecular engineering at Ohio State, and his colleagues described the two technologies Wednesday and Thursday at the American Chemical Society Fall National Meeting in San Francisco.

For more than a decade, Yang's team has been developing three-dimensional methods for growing cells for laboratory testing. His fibrous-bed bioreactor (FBB) is a device that allows cells to grow in natural 3D bundles. In the body, cells cling to supportive tissues as they grow; inside the FBB, they cling to strands of polyester fibers.

... more about:
»Device »Medium »Researchers »Yang »dosage »technologies

For the first of the two new technologies, Yang took the basic concept behind the FBB and combined it with laboratory testing methods that normally only grow cells in two dimensions.

Such tests are normally done on cells in trays containing many tiny wells. Each well contains a growth medium and some cells, and a protein that will cause growing cells to fluoresce. Researchers test a drug by adding it to a well. If the cells continue to fluoresce, that means that the cells are still reproducing, and the drug isn't effective at controlling growth.

The problem is how to measure the amount of fluorescence, to quantify how much the cells are growing. Fluorescing cells don't look very bright in the well, because they grow as a thin film layer that is essentially two-dimensional. Researchers get around this problem by removing the cells from the well and counting them one by one under a microscope.

It's a long and tedious process.

"Our idea is very simple," Yang said. "We wanted to intensify the signal so that it could be read inside the well, by cultivating the cells in three dimensions."

Yang and his team created a device that uses standard well plates in a new way. In one well, they plant cells on one of their 3D scaffolds. The surrounding eight wells contain only growth medium.

The 3D glob of cells in the middle well glows brighter than a 2D film, due to a specific optical effect, Yang said. The surrounding empty cells provide a darker background that lets the fluorescence signal be measured even more easily.

"You can use this as a device to monitor a drug's effect, whether you want to stimulate or inhibit cell growth," Yang said. "We have used it on colon cancer cells and mouse embryonic stem cells. And in both cases, we found a very good relation between cell growth and fluorescence intensity."

The device can be used with standard well plates, though nine wells are required for each test instead of one. He and his team are expanding the technology from 96-well plates to 384-well plates, and are working on their own custom plate design.

There is an advantage to using more wells: The eight empty wells supply nutrients to the cells in the middle well, so tests can run for up to two weeks without researchers having to replenish the growth medium.

"If you replenish the medium, you could essentially grow cells indefinitely," Yang said.

The second new technology to come from Yang's lab is a microfluidics platform that allows for testing of many types of cells or drug dosages at once. Tiny pipes connect wells that contain cells growing in 3D. The drug to be tested is pumped from a common reservoir into the pipes.

Each well could receive a different dosage of the same drug. Or, researchers could plant cells from different organs in each well, and see how each kind of cell reacts to the same dosage -- a quick way to detect a drug's potential side effects on the body.

"The trick is to use one pump for everything, and control the fluid distribution though all the channels," Yang said. While he has worked out an initial design, he would like to join with a commercial microfluidics manufacturer to develop the technology further.

The university is expecting to license both technologies.

Shang-Tian Yang | EurekAlert!
Further information:
http://www.osu.edu

Further reports about: Device Medium Researchers Yang dosage technologies

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>