Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first tree genome is published: Poplar holds promise as renewable bioenergy resource

18.09.2006
Wood from a common tree may one day factor prominently in meeting transportation fuel needs, according to scientists whose research on the fast-growing poplar tree is featured on the cover of tomorrow's edition of the journal Science.

The article, highlighting the analysis of the first complete DNA sequence of a tree, the black cottonwood or Populus trichocarpa, lays the groundwork that may lead to the development of trees as an ideal "feedstock" for a new generation of biofuels such as cellulosic ethanol. The research is the result of a four-year scientific and technical effort, led by the U.S. Department of Energy's Joint Genome Institute (DOE JGI) and Oak Ridge National Laboratory (ORNL), uniting the efforts of 34 institutions from around the world, including the University of British Columbia, and Genome Canada; Umeå University, Sweden; and Ghent University, Belgium.

"Biofuels could provide a major answer to our energy needs by giving the United States a homegrown, environmentally friendlier alternative to imported oil," said DOE's Under Secretary for Science Dr. Raymond L. Orbach. "Fine-tuning plants for biofuels production is one of the keys to making biofuels economically viable and cost-effective. This research, employing the latest genomic technologies, is an important step on the road to developing practical, biologically-based substitutes for gasoline and other fossil fuels."

"Biofuels are not only attractive for their potential to cut reliance on oil imports but also their reduced environmental impact," said Dr. Gerald A. Tuskan, ORNL and DOE JGI researcher and lead author of the SCIENCE study.

... more about:
»Biofuels »DOE »Genom »Genome »TREE »sequenced

"Biofuels emit fewer pollutants than fossil fuels such as gasoline. In addition, poplar and related plants are vital managers of atmospheric carbon. Trees store captured carbon dioxide in their leaves, branches, stems, and roots. This natural process provides opportunities to improve carbon removal from the air by producing trees that effectively shuttle and store more carbon below ground in their roots and the soil. Moreover, bioenergy crops re-absorb carbon dioxide emitted when biofuels are consumed, creating a cycle that is essentially carbon neutral."

Poplar's extraordinarily rapid growth, and its relatively compact genome size of 480 million nucleotide units, 40 times smaller than the genome of pine, are among the many features that led researchers to target poplar as a model crop for biofuels production.

"Under optimal conditions, poplars can add a dozen feet of growth each year and reach maturity in as few as four years, permitting selective breeding for large-scale sustainable plantation forestry," said Dr. Sam Foster of the U.S. Forest Service. "This rapid growth coupled with conversion of the lignocellulosic portion of the plant to ethanol has the potential to provide a renewable energy resource along with a reduction of greenhouse gases."

"The challenge of global warming requires global solutions," said Martin Godbout, President, Genome Canada. "The international consortium that successfully sequenced the poplar genome provides a model for great minds working together and serves as an example of how discovery science can be applied to current environmental problems facing humanity."

Among the major discoveries yielded from the poplar project is the identification of over 45,000 protein-coding genes, more than any other organism sequenced to date, approximately twice as many as present in the human genome (which has a genome six times larger than the poplar's). The research team identified 93 genes associated with the production of cellulose, hemicellulose and lignin, the building blocks of plant cell walls. The biopolymers cellulose and hemicellulose constitute the most abundant organic materials on earth, which by enzymatic action, can be broken down into sugars that in turn can be fermented into alcohol and distilled to yield fuel-quality ethanol and other liquid fuels.

Poplar is the most complex genome to be sequenced and assembled by a single public sequencing facility and only the third plant to date to have its genome completely sequenced and published. The first, back in 2000, was the tiny weed, Arabidopsis thaliana, an important model for plant genetics. Rice was the second, two years ago. Populus trichocarpa is one of the tallest broadleaf hardwood trees in the western U.S., native to the Pacific coast from San Diego to Alaska. The sequenced DNA was isolated from a specimen collected along the banks of the Nisqually river in Washington State.

The poplar project supports a broader DOE drive to accelerate research into biofuels production, under the Bush Administration's Advanced Energy Initiative. In August, the department announced it would spend $250 million over five years to establish and operate two new Bioenergy Research Centers. The DOE-supported research into biofuels is focusing on both plants and microbes, in an effort to discover new biotechnology-based methods of producing fuels from plant matter (biomass) cost-effectively.

Earlier this year DOE published a study summarizing the views of over fifty leading scientists in the field of biofuels research that expressed optimism about the prospects for finding cost-effective methods to produce fuels such as ethanol from cellulose in the not-too-distant future (Breaking the Biological Barriers to Cellulosic Ethanol, available at http://genomicsgtl.energy.gov/biofuels/b2bworkshop.shtml). Secretary of Energy Samuel W. Bodman has set a departmental goal of replacing 30 percent of current transportation fuel demand with biofuels by 2030.

DOE scientists envision a future where vast poplar farms in regions such as the Pacific Northwest, the upper Midwest, and portions of the southeastern U.S. could provide a steady supply of tree biomass rich in cellulose that can be transformed by specialized biorefineries into fuels like ethanol. Other regions of the country might specialize in different "energy crops" suited to their particular climate and soil conditions, including such plants as switchgrass and willow. In addition, a large quantity of biofuels might be produced from agricultural and forestry waste.

David Gilbert | EurekAlert!
Further information:
http://www.llnl.gov
http://genomicsgtl.energy.gov/biofuels/b2bworkshop.shtml
http://www.jgi.doe.gov

Further reports about: Biofuels DOE Genom Genome TREE sequenced

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>