Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first tree genome is published: Poplar holds promise as renewable bioenergy resource

18.09.2006
Wood from a common tree may one day factor prominently in meeting transportation fuel needs, according to scientists whose research on the fast-growing poplar tree is featured on the cover of tomorrow's edition of the journal Science.

The article, highlighting the analysis of the first complete DNA sequence of a tree, the black cottonwood or Populus trichocarpa, lays the groundwork that may lead to the development of trees as an ideal "feedstock" for a new generation of biofuels such as cellulosic ethanol. The research is the result of a four-year scientific and technical effort, led by the U.S. Department of Energy's Joint Genome Institute (DOE JGI) and Oak Ridge National Laboratory (ORNL), uniting the efforts of 34 institutions from around the world, including the University of British Columbia, and Genome Canada; Umeå University, Sweden; and Ghent University, Belgium.

"Biofuels could provide a major answer to our energy needs by giving the United States a homegrown, environmentally friendlier alternative to imported oil," said DOE's Under Secretary for Science Dr. Raymond L. Orbach. "Fine-tuning plants for biofuels production is one of the keys to making biofuels economically viable and cost-effective. This research, employing the latest genomic technologies, is an important step on the road to developing practical, biologically-based substitutes for gasoline and other fossil fuels."

"Biofuels are not only attractive for their potential to cut reliance on oil imports but also their reduced environmental impact," said Dr. Gerald A. Tuskan, ORNL and DOE JGI researcher and lead author of the SCIENCE study.

... more about:
»Biofuels »DOE »Genom »Genome »TREE »sequenced

"Biofuels emit fewer pollutants than fossil fuels such as gasoline. In addition, poplar and related plants are vital managers of atmospheric carbon. Trees store captured carbon dioxide in their leaves, branches, stems, and roots. This natural process provides opportunities to improve carbon removal from the air by producing trees that effectively shuttle and store more carbon below ground in their roots and the soil. Moreover, bioenergy crops re-absorb carbon dioxide emitted when biofuels are consumed, creating a cycle that is essentially carbon neutral."

Poplar's extraordinarily rapid growth, and its relatively compact genome size of 480 million nucleotide units, 40 times smaller than the genome of pine, are among the many features that led researchers to target poplar as a model crop for biofuels production.

"Under optimal conditions, poplars can add a dozen feet of growth each year and reach maturity in as few as four years, permitting selective breeding for large-scale sustainable plantation forestry," said Dr. Sam Foster of the U.S. Forest Service. "This rapid growth coupled with conversion of the lignocellulosic portion of the plant to ethanol has the potential to provide a renewable energy resource along with a reduction of greenhouse gases."

"The challenge of global warming requires global solutions," said Martin Godbout, President, Genome Canada. "The international consortium that successfully sequenced the poplar genome provides a model for great minds working together and serves as an example of how discovery science can be applied to current environmental problems facing humanity."

Among the major discoveries yielded from the poplar project is the identification of over 45,000 protein-coding genes, more than any other organism sequenced to date, approximately twice as many as present in the human genome (which has a genome six times larger than the poplar's). The research team identified 93 genes associated with the production of cellulose, hemicellulose and lignin, the building blocks of plant cell walls. The biopolymers cellulose and hemicellulose constitute the most abundant organic materials on earth, which by enzymatic action, can be broken down into sugars that in turn can be fermented into alcohol and distilled to yield fuel-quality ethanol and other liquid fuels.

Poplar is the most complex genome to be sequenced and assembled by a single public sequencing facility and only the third plant to date to have its genome completely sequenced and published. The first, back in 2000, was the tiny weed, Arabidopsis thaliana, an important model for plant genetics. Rice was the second, two years ago. Populus trichocarpa is one of the tallest broadleaf hardwood trees in the western U.S., native to the Pacific coast from San Diego to Alaska. The sequenced DNA was isolated from a specimen collected along the banks of the Nisqually river in Washington State.

The poplar project supports a broader DOE drive to accelerate research into biofuels production, under the Bush Administration's Advanced Energy Initiative. In August, the department announced it would spend $250 million over five years to establish and operate two new Bioenergy Research Centers. The DOE-supported research into biofuels is focusing on both plants and microbes, in an effort to discover new biotechnology-based methods of producing fuels from plant matter (biomass) cost-effectively.

Earlier this year DOE published a study summarizing the views of over fifty leading scientists in the field of biofuels research that expressed optimism about the prospects for finding cost-effective methods to produce fuels such as ethanol from cellulose in the not-too-distant future (Breaking the Biological Barriers to Cellulosic Ethanol, available at http://genomicsgtl.energy.gov/biofuels/b2bworkshop.shtml). Secretary of Energy Samuel W. Bodman has set a departmental goal of replacing 30 percent of current transportation fuel demand with biofuels by 2030.

DOE scientists envision a future where vast poplar farms in regions such as the Pacific Northwest, the upper Midwest, and portions of the southeastern U.S. could provide a steady supply of tree biomass rich in cellulose that can be transformed by specialized biorefineries into fuels like ethanol. Other regions of the country might specialize in different "energy crops" suited to their particular climate and soil conditions, including such plants as switchgrass and willow. In addition, a large quantity of biofuels might be produced from agricultural and forestry waste.

David Gilbert | EurekAlert!
Further information:
http://www.llnl.gov
http://genomicsgtl.energy.gov/biofuels/b2bworkshop.shtml
http://www.jgi.doe.gov

Further reports about: Biofuels DOE Genom Genome TREE sequenced

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>