Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Motorola researchers develop selective sensors based on carbon nanotubes

15.09.2006
A team of researchers from Arizona State University and Motorola Labs, the applied research arm of Motorola Inc., has developed sensors based on carbon nanotubes, microscopically small structures that posses excellent electronic properties. In early tests, the new devices detected the presence of heavy metal ions in water down to parts per trillion levels.

Specifically, the researchers developed a method for applying peptides to single walled carbon nanotubes (SWNT) in field effect transistors.

"This is a fairly general sensor platform for all kinds of applications," said Nongjian Tao, an electrical engineering professor at Arizona State University and one of the researchers on the project. "We tested heavy metal ions in water, but the platform can be applied to many other areas to sense toxic chemicals in the air, or they can be used as biosensors when applied to medicine."

"Integration of nanosensors into devices and sensor networks will enable the detection of biological and chemical agents at very low concentrations, which could be vital in the areas of public safety and homeland security," added Vida Ilderem, vice president of the Embedded Systems Research Labs at Motorola, Tempe, Ariz.

The researchers report the advance in a paper, "Tuning the chemical selectivity of SWNT-FETs for detection of heavy metal ions," which will be published in the journal Small. An early view of the article is available at the journal's web site (www3.interscience.wiley.com/cgi-bin/jissue/109627347).

"Our sensor is based on the novel properties of peptides and carbon nanotubes," Tao explained. "Peptides can be used to recognize and detect various chemical species with high sensitivity and selectivity while carbon nanotubes are well known for their electronic properties."

The peptides are made of 20 or so amino acids, so changing the sequence of amino acids allows the researchers to "tune the peptides and recognize different compounds," Tao said. "We developed a simple way to attach different peptides to different nanotubes."

Erica Forzani, an ASU assistant research professor in electrical engineering, said the peptides are selective to specific compounds. In the heavy metal tests, the researchers developed a peptide to detect nickel and one to detect copper. If the nickel peptide were used, it would only detect the presence of nickel and be "blind" to any other heavy metal ion (copper, lead or zinc) passing over the carbon nanotubes.

Tao added it's the combination of the structure of the nanotubes and the selectivity of the peptides that make the devices so powerful.

"The nanotubes basically are a sheet of interconnected atoms rolled into a tube," Tao said. "Every single atom in the tube is exposed to the environment and can interact with chemicals and molecules. That is why it is so sensitive. But without the peptides, it would not recognize specific compounds."

"The potential for the carbon nanotubes is extraordinary," Forzani added, "because with a very simple device that does not require sophisticated electronic circuitry, you can detect very low concentrations of analytes."

The researchers now will investigate the use of the sensors on biological molecules, like RNA sequence detection, Tao and Forzani said.

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

Further reports about: Carbon Motorola Nanotubes Researchers Tao amino acid carbon nanotubes

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>