Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Motorola researchers develop selective sensors based on carbon nanotubes

15.09.2006
A team of researchers from Arizona State University and Motorola Labs, the applied research arm of Motorola Inc., has developed sensors based on carbon nanotubes, microscopically small structures that posses excellent electronic properties. In early tests, the new devices detected the presence of heavy metal ions in water down to parts per trillion levels.

Specifically, the researchers developed a method for applying peptides to single walled carbon nanotubes (SWNT) in field effect transistors.

"This is a fairly general sensor platform for all kinds of applications," said Nongjian Tao, an electrical engineering professor at Arizona State University and one of the researchers on the project. "We tested heavy metal ions in water, but the platform can be applied to many other areas to sense toxic chemicals in the air, or they can be used as biosensors when applied to medicine."

"Integration of nanosensors into devices and sensor networks will enable the detection of biological and chemical agents at very low concentrations, which could be vital in the areas of public safety and homeland security," added Vida Ilderem, vice president of the Embedded Systems Research Labs at Motorola, Tempe, Ariz.

The researchers report the advance in a paper, "Tuning the chemical selectivity of SWNT-FETs for detection of heavy metal ions," which will be published in the journal Small. An early view of the article is available at the journal's web site (www3.interscience.wiley.com/cgi-bin/jissue/109627347).

"Our sensor is based on the novel properties of peptides and carbon nanotubes," Tao explained. "Peptides can be used to recognize and detect various chemical species with high sensitivity and selectivity while carbon nanotubes are well known for their electronic properties."

The peptides are made of 20 or so amino acids, so changing the sequence of amino acids allows the researchers to "tune the peptides and recognize different compounds," Tao said. "We developed a simple way to attach different peptides to different nanotubes."

Erica Forzani, an ASU assistant research professor in electrical engineering, said the peptides are selective to specific compounds. In the heavy metal tests, the researchers developed a peptide to detect nickel and one to detect copper. If the nickel peptide were used, it would only detect the presence of nickel and be "blind" to any other heavy metal ion (copper, lead or zinc) passing over the carbon nanotubes.

Tao added it's the combination of the structure of the nanotubes and the selectivity of the peptides that make the devices so powerful.

"The nanotubes basically are a sheet of interconnected atoms rolled into a tube," Tao said. "Every single atom in the tube is exposed to the environment and can interact with chemicals and molecules. That is why it is so sensitive. But without the peptides, it would not recognize specific compounds."

"The potential for the carbon nanotubes is extraordinary," Forzani added, "because with a very simple device that does not require sophisticated electronic circuitry, you can detect very low concentrations of analytes."

The researchers now will investigate the use of the sensors on biological molecules, like RNA sequence detection, Tao and Forzani said.

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

Further reports about: Carbon Motorola Nanotubes Researchers Tao amino acid carbon nanotubes

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>