Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The sweet science: Viruses switch grip to gain upper hand

15.09.2006
Carbohydrates can be attractive, especially when they come packaged in candy bars or never-ending bowls of pasta.

Even viruses - those bits of occasionally harmful genetic material enclosed in shells of protein and fat - crave carbs. Except viruses aren't seeking a taste treat. They want to latch onto the carbohydrates that protrude from the surface of our cells and mount an invasion.

By changing which carbohydrates they attach to, viruses are able to infect cells more efficiently - a finding that may prove valuable to scientists seeking ways to fight cancer or brain diseases, say University of Florida researchers writing in the current Journal of Biological Chemistry. The discovery also helps explain how flu and other viruses are able to stay a step ahead of the body's own versatile immune system.

"If you think about the flu virus, a few simple amino acid changes can be the difference between a virus your body can defend against and one that will make you sick," said Mavis Agbandje-McKenna, Ph.D., an associate professor of biochemistry and molecular biology in the UF College of Medicine and senior author of the paper. "It seems structural juxtapositions of amino acids play a role in determining how viruses recognize cells and whether the viruses are harmful."

... more about:
»MVMp »amino »amino acid »carbohydrates »glycan

The idea that proteins on a virus' outer shell mutate to get a more lethal grip on a cell's sugary coat of carbohydrates, or glycans, became apparent when UF scientists studied the Minute Virus of Mice, or MVM.

One strain of the virus, MVMp, is harmless and causes no ill effects, even in mice without a functioning immune system. However, a different version of the virus, MVMi, can be fatal to these mice. Both viruses resemble miniature, 20-sided soccer balls, and between them their outer protein shells differ by only 14 out of more than 500 amino acids.

But a few years ago, the normally mild MVMp virus mutated slightly, suddenly becoming harmful to the defenseless mice.

"One or two changes in amino acids made the difference between a virus that kills and one that does not kill mice," said Agbandje-McKenna, who is associated with both UF's McKnight Brain Institute and the UF Genetic Institute. "We wanted to know how such a slight change could make this virus become lethal."

Working with the Consortium for Functional Glycomics, an international team of more than 230 scientists under the National Institute of General Medical Sciences, UF researchers became the first to use a new technique called a glycan array to study how a whole, intact virus interacts with carbohydrates.

Scientists exposed 189 glycans mounted on a 3-by- 5-inch plastic plate to dangerous MVMi, harmless MVMp and three potentially dangerous, mutant strains of MVMp.

Scientists found MVMp proteins stuck to the same three glycans on the plate. However, one of the mutant MVMp viruses also bound to an additional glycan - one associated with the more dangerous MVMi strain.

"A single amino-acid change in the virus' protein shell changes how it can grip the cell, making it more deadly," she said. "Actually, the affinity is reduced, so the more deadly strain of the virus does not bind as tightly. We're not sure why, but it may be because it can more easily let go and get into the cell to cause disease. It's not giving the body the time to mount an immune response."

Understanding how viruses adapt to different hosts and different tissues could be useful for developing gene therapies, which involve introducing specially engineered genes into a patient's cells via apparently harmless viruses. In cancer treatment, the new genes might be intended to prompt the body's natural defenses, or actually attack the cancer cells themselves.

In terms of medical treatments, the finding helps explain why a virus would be able to home in on a cancer or brain cell - by recognizing sugars on the cell's surface, according to Hyun-Joo Nam, Ph.D., an assistant scientist in department of biochemistry and molecular biology and the paper's first author.

"Scientists want to use viruses they know to be nonpathogenic as vehicles for either gene and cancer therapies, and they also want to know how viruses target cancer and other differentiated cells," said Peter Tattersall, Ph.D., a professor of laboratory medicine and genetics at Yale University who was not involved in the research. "The most likely medical significance of this finding is for fine tuning viruses and vectors to target cancer and other differentiated cell types. This is a major field that is advancing rapidly."

John D. Pastor | EurekAlert!
Further information:
http://www.vpha.health.ufl.edu

Further reports about: MVMp amino amino acid carbohydrates glycan

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>