Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The sweet science: Viruses switch grip to gain upper hand

15.09.2006
Carbohydrates can be attractive, especially when they come packaged in candy bars or never-ending bowls of pasta.

Even viruses - those bits of occasionally harmful genetic material enclosed in shells of protein and fat - crave carbs. Except viruses aren't seeking a taste treat. They want to latch onto the carbohydrates that protrude from the surface of our cells and mount an invasion.

By changing which carbohydrates they attach to, viruses are able to infect cells more efficiently - a finding that may prove valuable to scientists seeking ways to fight cancer or brain diseases, say University of Florida researchers writing in the current Journal of Biological Chemistry. The discovery also helps explain how flu and other viruses are able to stay a step ahead of the body's own versatile immune system.

"If you think about the flu virus, a few simple amino acid changes can be the difference between a virus your body can defend against and one that will make you sick," said Mavis Agbandje-McKenna, Ph.D., an associate professor of biochemistry and molecular biology in the UF College of Medicine and senior author of the paper. "It seems structural juxtapositions of amino acids play a role in determining how viruses recognize cells and whether the viruses are harmful."

... more about:
»MVMp »amino »amino acid »carbohydrates »glycan

The idea that proteins on a virus' outer shell mutate to get a more lethal grip on a cell's sugary coat of carbohydrates, or glycans, became apparent when UF scientists studied the Minute Virus of Mice, or MVM.

One strain of the virus, MVMp, is harmless and causes no ill effects, even in mice without a functioning immune system. However, a different version of the virus, MVMi, can be fatal to these mice. Both viruses resemble miniature, 20-sided soccer balls, and between them their outer protein shells differ by only 14 out of more than 500 amino acids.

But a few years ago, the normally mild MVMp virus mutated slightly, suddenly becoming harmful to the defenseless mice.

"One or two changes in amino acids made the difference between a virus that kills and one that does not kill mice," said Agbandje-McKenna, who is associated with both UF's McKnight Brain Institute and the UF Genetic Institute. "We wanted to know how such a slight change could make this virus become lethal."

Working with the Consortium for Functional Glycomics, an international team of more than 230 scientists under the National Institute of General Medical Sciences, UF researchers became the first to use a new technique called a glycan array to study how a whole, intact virus interacts with carbohydrates.

Scientists exposed 189 glycans mounted on a 3-by- 5-inch plastic plate to dangerous MVMi, harmless MVMp and three potentially dangerous, mutant strains of MVMp.

Scientists found MVMp proteins stuck to the same three glycans on the plate. However, one of the mutant MVMp viruses also bound to an additional glycan - one associated with the more dangerous MVMi strain.

"A single amino-acid change in the virus' protein shell changes how it can grip the cell, making it more deadly," she said. "Actually, the affinity is reduced, so the more deadly strain of the virus does not bind as tightly. We're not sure why, but it may be because it can more easily let go and get into the cell to cause disease. It's not giving the body the time to mount an immune response."

Understanding how viruses adapt to different hosts and different tissues could be useful for developing gene therapies, which involve introducing specially engineered genes into a patient's cells via apparently harmless viruses. In cancer treatment, the new genes might be intended to prompt the body's natural defenses, or actually attack the cancer cells themselves.

In terms of medical treatments, the finding helps explain why a virus would be able to home in on a cancer or brain cell - by recognizing sugars on the cell's surface, according to Hyun-Joo Nam, Ph.D., an assistant scientist in department of biochemistry and molecular biology and the paper's first author.

"Scientists want to use viruses they know to be nonpathogenic as vehicles for either gene and cancer therapies, and they also want to know how viruses target cancer and other differentiated cells," said Peter Tattersall, Ph.D., a professor of laboratory medicine and genetics at Yale University who was not involved in the research. "The most likely medical significance of this finding is for fine tuning viruses and vectors to target cancer and other differentiated cell types. This is a major field that is advancing rapidly."

John D. Pastor | EurekAlert!
Further information:
http://www.vpha.health.ufl.edu

Further reports about: MVMp amino amino acid carbohydrates glycan

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>