Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutation plays key role in hypertension

15.09.2006
A gene mutation of a key enzyme that regulates smooth muscle contraction and blood pressure in rats has been identified by researchers at the University of Illinois at Chicago. The finding, the first genetic link to muscle contraction and high blood pressure, may lead to improved treatments for hypertension.

The study appears in the September issue of Molecular Biology of the Cell.

When myosin, a protein that is abundant in muscle and is necessary for muscle contraction, is activated, smooth muscle cells in blood vessel walls contract and raise blood pressure. The cells also proliferate, thickening the walls and narrowing the channel, further increasing blood pressure.

Together, this results in hypertension, according to Dr. Primal de Lanerolle, professor of physiology and biophysics and senior author of the study. The current crop of drugs used to treat hypertension mainly targets contraction of the smooth muscle cells. They do not affect the proliferation of the cells, and the thickening of the walls of blood vessels is presently irreversible.

In the new study, the researchers were able to confirm the increased levels of the activated form of myosin in hypertensive rats, a widely used animal model of hypertension. More importantly, they established why myosin activation is elevated and linked the mechanism to a gene mutation.

The researchers found there was more of a protein called smooth muscle myosin light chain kinase, which activates myosin, in their hypertensive rats than in closely related rats that do not develop hypertension. They also found that there was more of the kinase's messenger RNA, the genetic message the cell uses to make the kinase.

"This told us that whatever was happening to raise levels of the kinase was happening at a genetic level," de Lanerolle said.

Although secondary hypertension may result from another disorder or from some medications, essential hypertension -- the most common form of high blood pressure -- has no known cause. Genetic, environmental and behavioral factors, such as diet, are believed to play a role, but no gene mutations have been identified in proteins that regulate smooth muscle contraction in essential hypertension.

Dr. Yoo-Jeong Han, research associate in physiology and biophysics and lead author of the study, determined the DNA sequence of the stretch of the kinase gene that controls how often it is copied, and thus controls the level of kinase in the cell. She found a mutation in the hypertensive animals -- an insertion of a small extra piece of DNA.

The insertion changes the shape of the gene slightly, Han said, making it easier for a transcription factor (another protein that is essentially an on/off switch for genes) to bind and turn on the kinase gene.

"The result is more copies of the gene, more of the kinase in the cell, and, ultimately, more contraction and proliferation of smooth muscle cells," she said.

The transcription factor that binds the mutated gene more easily is part of a cell signalling pathway. This pathway is activated by a protein called Ras, and mutations in Ras have been previously implicated in numerous human cancers.

"When we blocked Ras signalling in the hypertensive rats, we were able to block the proliferation of the smooth muscle cells in the vessel walls and the development of hypertension," said de Lanerolle.

The next question, according to de Lanerolle, is whether a similar mechanism operates in humans to cause essential hypertension.

"If we find a similar mutation in the equivalent human gene, it will make it easier to identify people at risk for developing hypertension," de Lanerolle said. "People with a genetic predisposition to hypertension would be able to lower their risk through behavioral change or, someday, perhaps, drug therapy."

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

Further reports about: Kinase Lanerolle Mutation Myosin contraction hypertension hypertensive

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>