Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mutation plays key role in hypertension

A gene mutation of a key enzyme that regulates smooth muscle contraction and blood pressure in rats has been identified by researchers at the University of Illinois at Chicago. The finding, the first genetic link to muscle contraction and high blood pressure, may lead to improved treatments for hypertension.

The study appears in the September issue of Molecular Biology of the Cell.

When myosin, a protein that is abundant in muscle and is necessary for muscle contraction, is activated, smooth muscle cells in blood vessel walls contract and raise blood pressure. The cells also proliferate, thickening the walls and narrowing the channel, further increasing blood pressure.

Together, this results in hypertension, according to Dr. Primal de Lanerolle, professor of physiology and biophysics and senior author of the study. The current crop of drugs used to treat hypertension mainly targets contraction of the smooth muscle cells. They do not affect the proliferation of the cells, and the thickening of the walls of blood vessels is presently irreversible.

In the new study, the researchers were able to confirm the increased levels of the activated form of myosin in hypertensive rats, a widely used animal model of hypertension. More importantly, they established why myosin activation is elevated and linked the mechanism to a gene mutation.

The researchers found there was more of a protein called smooth muscle myosin light chain kinase, which activates myosin, in their hypertensive rats than in closely related rats that do not develop hypertension. They also found that there was more of the kinase's messenger RNA, the genetic message the cell uses to make the kinase.

"This told us that whatever was happening to raise levels of the kinase was happening at a genetic level," de Lanerolle said.

Although secondary hypertension may result from another disorder or from some medications, essential hypertension -- the most common form of high blood pressure -- has no known cause. Genetic, environmental and behavioral factors, such as diet, are believed to play a role, but no gene mutations have been identified in proteins that regulate smooth muscle contraction in essential hypertension.

Dr. Yoo-Jeong Han, research associate in physiology and biophysics and lead author of the study, determined the DNA sequence of the stretch of the kinase gene that controls how often it is copied, and thus controls the level of kinase in the cell. She found a mutation in the hypertensive animals -- an insertion of a small extra piece of DNA.

The insertion changes the shape of the gene slightly, Han said, making it easier for a transcription factor (another protein that is essentially an on/off switch for genes) to bind and turn on the kinase gene.

"The result is more copies of the gene, more of the kinase in the cell, and, ultimately, more contraction and proliferation of smooth muscle cells," she said.

The transcription factor that binds the mutated gene more easily is part of a cell signalling pathway. This pathway is activated by a protein called Ras, and mutations in Ras have been previously implicated in numerous human cancers.

"When we blocked Ras signalling in the hypertensive rats, we were able to block the proliferation of the smooth muscle cells in the vessel walls and the development of hypertension," said de Lanerolle.

The next question, according to de Lanerolle, is whether a similar mechanism operates in humans to cause essential hypertension.

"If we find a similar mutation in the equivalent human gene, it will make it easier to identify people at risk for developing hypertension," de Lanerolle said. "People with a genetic predisposition to hypertension would be able to lower their risk through behavioral change or, someday, perhaps, drug therapy."

Jeanne Galatzer-Levy | EurekAlert!
Further information:

Further reports about: Kinase Lanerolle Mutation Myosin contraction hypertension hypertensive

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>