Researchers to build an artificial “bio-electronic” nose

Professor Hywel Morgan at the University’s School of Electronics & Computer Science (ECS) and Dr Peter Roach at the School of Chemistry and their team have received a European grant (€450k) to create a system that can detect single molecules in biological solutions.

They are using variants of molecules found in biology and creating ‘senses’ from electrical charges caused by the binding of the molecules to mimic the human nose. With this approach, the sensitivity of the device can be a thousand times better than the currently available electronic nose.

The receptors, which will be housed within an artificial membrane, remain in a closed steady state until approached by smell molecules, when they will open and transmit an electrical signal which will indicate the nature of the odour.

Professor Morgan comments: ‘Many medical diseases involve odour. A device such as ours could measure different hormones, diagnose diseases and even sniff for traces of explosives. Most odours are still mapped by humans. If we can find a way to replace this function with technology, we could use odour detection in many new areas’

Media Contact

Helene Murphy alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors