Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fuel cell membrane materials offer solution for removing salt from water

14.09.2006
The problem of separating salt from water has long been solved by forcing the water through a polyamide membrane in a process called reverse osmosis (RO).

However, the water can't be disinfected with chlorine because it degrades polyamid material. Now, researchers at Virginia Tech have created a new polymer membrane for RO that will not be degraded by chlorine.

They will present the research at the 232nd National Meeting of the American Chemical Society on September 10-14 in San Francisco.

"Our RO materials grew out of our work on proton exchange membrane (PEM) materials used in fuel cells," said James McGrath, University Distinguished Professor of Chemistry at Virginia Tech. "The polymer structure is similar, but PEM materials are treated with a dilute acid and the RO materials are treated with a salt to put them in the neutral form."

... more about:
»McGrath »Membrane »Water

Last year, McGrath's group received funding from the Office of Naval Research (ONR) to develop an RO material that would not break down from chlorine. "We have suggested for some time that PEM materials could be used so our students quickly began sending sample materials for testing to Benny D. Freeman, chemical engineer at the University of Texas, Austin. And within a year we had a successful material. "People have been doing RO for 40 years, but not with this new material," McGrath said.

Post doctoral Associate Zhong-Biao Zhang will deliver a paper on how the new materials are made and how they work at 2:20 p.m. Wednesday, Sept. 13, in Salon B3 of the Marriott. Authors of "Synthesis of di-sulfonated poly(arylene ether sulfone) random copolymers as novel candidates for chlorine-resistant reverse osmosis membranes (PMSE 494)" are Zhang, Virginia Tech graduate students Guang-Yu Fan and Mehmet Sankir, Ho Bum Park and Freeman at the University of Texas, and McGrath.

The ONR has expanded the project to add Don Baird, professor of chemical engineering at Virginia Tech, to fabricate the membrane. "The material we created and evaluated in the first year was relatively thick," McGrath said. "To be competitive, it has to be a thin film so the water can pass through quickly -- 10 to 100 times thinner than our present samples. That is not trivial but we think we know how to do it."

The Virginia Tech research group has created an asymmetric membrane. Imagine rigid foam with a thin membrane skin. The separation takes place at the skin and the water passes quickly through the foam's large pores. Without the foam, the skin or film layer is not strong enough to withstand the pressure of RO.

McGrath is now looking for companies to work with to produce the new material.

He is also working on a different process to separate ethanol from water. "We think we can make membranes to do that too," he said.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

Further reports about: McGrath Membrane Water

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>