Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New and Simple Test for Active Tuberculosis Now Possible

14.09.2006
Tuberculosis (TB) is the number one cause of death by infection in the world today killing about two million people. Yet most deaths from TB are easily preventable by early diagnosis and treatment.

Many clinicians still rely on a diagnostic test that is over 100 years old. In research published in the Lancet today, Scientists at St George’s, University of London have come up with a new way of detecting TB using unique biomarkers. The test is 94% accurate and can be developed into a simple serum test.

Professor Sanjeev Krishna in the Centre for Infection and his team, in collaboration with the National Institute of Medical Research (UK), have been able to identify a complex signature in serum unique to TB that is not present in samples from other infections and lung diseases. Researchers were able to detect this unique signature using a mass spectrometer called a SELDI (surface-enhanced laser desorption and ionization time-of-flight spectrometer). They then used this signature to work out a simpler way to diagnose TB.

Currently, the diagnosis of TB involves looking at sputum with a microscope, which is often the only affordable and available test, but only achieves a sensitivity of 40 – 60% under field conditions. Sputum culture, which takes between 2 – 6 weeks to produce a result, is not routinely carried out in countries with a high prevalence of TB but helps to improve diagnostic yield. The key to reducing death rates in patients with TB, and to stopping transmission in resource poor countries, is to diagnose and start treatment in the first visit to the clinic.

... more about:
»Diagnostic »clinic »death

Professor Sanjeev Krishna “We are putting forward a completely fresh approach to look at an ancient problem. I think it is going to be very exciting to make this work in clinics where a test for TB is desperately needed. The next stage will be to use the biomarkers we have identified to develop a cheap, accurate and rapid diagnostic test that can be used easily and quickly out in the field.”

Emma Griffiths | alfa
Further information:
http://www.sgul.ac.uk

Further reports about: Diagnostic clinic death

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>