Study shows enzyme builds neurotransmitters via newly discovered pathway

The study, which was directed by Scripps Research Professor Benjamin Cravatt, Ph.D., is being published in the September 8 issue of The Journal of Biological Chemistry.

The new study describes a pathway-different than the one previously suggested-for the biosynthesis of neurotransmitter lipids, N-acyl ethanolamines (NAEs), which include the endogenous cannabinoid (“endocannabinoid”) anandamide. The high activity of the enzyme a/b hydrolase4 (Abh4) in areas such as the central nervous system suggests that the pathway makes a “potentially major contribution” to endocannabinoid signaling.

Endocannabinoids are naturally produced substances similar to the active ingredient D9-tetrahydrocannabinol (THC) in marijuana. Cannabinoid receptors were first discovered in 1988; the first endocannabinoid, anandamide, which shares some of the pharmacologic properties of THC, was identified in 1992.

Other research has shown that the endogenous cannabinoid system helps control food intake, among other critical processes, by acting on cannabinoid receptors in the central nervous system. The system drives consumption of fat and calorie-rich foods and the amount of fat stored or expended and plays a significant role in energy homeostasis.

“At least one cannabinoid receptor antagonist is on the verge of approval for the treatment of obesity-metabolic disorders,” said Cravatt. “Enzymes involved in endocannabinoid biosynthesis, such as the one highlighted in our study, can be viewed as complementary drug targets. One potential advantage of this approach is that it may prove more selective than a receptor antagonist. By inhibiting enzymes such as Abh4, we may be able to disrupt the activity of a single class of endocannabinoids, rather than all of them.”

In the new study, the researchers provide biochemical evidence of an alternative pathway for NAE biosynthesis in vivo and demonstrate that these new routes are especially important for the creation of a number of NAEs, including anandamide. The researchers also isolated and identified the enzyme Abh4 by combining traditional protein purification and functional proteomic technologies, concluding that Abh4 “displayed multiple properties” that would be expected of an enzyme involved in NAE biosynthesis.

However, the authors of the study noted, the unique contribution that this Abh4-mediated route makes to the production of NAEs in vivo is yet to be determined and will require “the generation of genetic or pharmacological tools that selectively [interrupt] this pathway.”

“The continued pursuit of additional enzymes involved in NAE biosynthesis should further enrich our understanding of the complex metabolic network that supports the endocannabinoid/NAE system in vivo,” Cravatt said. “From a therapeutic perspective, any of these enzymes could represent an attractive drug target for a range of human disorders in which disruption of endocannabinoid signaling by cannabinoid receptor antagonists has proven beneficial.”

Media Contact

Keith McKeown EurekAlert!

More Information:

http://www.scripps.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors