Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New catalyst removes harmful perchlorate from groundwater

13.09.2006
Scientists at the University of Illinois at Urbana-Champaign have developed a new chemical catalyst that uses hydrogen gas to efficiently remove and destroy harmful perchlorate in contaminated groundwater.

Found in solid-rocket fuel, roadside flares and fireworks, perchlorate is a dangerous contaminant that can disrupt thyroid function by interfering with the uptake of iodine. Infants and fetuses are believed to be particularly at risk from the effects of perchlorate exposure.

Because perchlorate is readily soluble in water, it can be transported vast distances in groundwater or rivers. A plume of contaminated groundwater from a manufacturing plant near Las Vegas, for example, reached the Colorado River and spread throughout the Southwest. Cleanup could take decades. "Perchlorate has been recognized as a significant environmental contaminant in U.S. water supplies, and its physical and chemical properties pose a serious challenge for remediation," said John Shapley, a professor of chemistry at Illinois and co-developer, with graduate student Keith Hurley, of the new catalyst.

Efforts at remediation using naturally occurring microorganisms or existing pump-and-treat technology are too complicated, too energy intensive or too slow to be practical, Shapley said.

... more about:
»Groundwater »catalyst »perchlorate

The new catalyst is composed of two metals – palladium and rhenium – supported on activated carbon. The catalyst operates at room temperature under normal atmospheric pressure, and does not dissolve in water.

"In catalytic operation, the rhenium removes an oxygen atom from the perchlorate molecule in what is called an atom transfer reaction," Hurley said. "Meanwhile, the palladium activates the gaseous hydrogen atoms so they will react with the freed oxygen. What's left is harmless chloride and water." The catalytic reaction continues as long as there is both hydrogen gas and perchlorate contaminant present.

"While current technologies – such as ion exchange systems – can concentrate and remove perchlorate from water, they cannot destroy it," said Shapley, who will describe the new catalyst at the national meeting of the American Chemical Society, to be held in San Francisco, Sept. 10-14. "Our catalyst would take a concentrated stream of perchlorate and get rid of it altogether."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

Further reports about: Groundwater catalyst perchlorate

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>