Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life, as it was in the beginning?

17.01.2002


200 meters below Idaho, bacteria are living on basalt.
© SPL


A new type of Earth ecosystem could be found on other planets.

Scientists have found a community of microbes unlike anything else on Earth. Conditions in this ecosystem could mimic those on Earth when life began, and might exist elsewhere in today’s Solar System.

Home to the microbes is a hot spring 200 metres beneath the US state of Idaho. Their lives owe nothing to the Sun. They generate energy by combining hydrogen from rocks with carbon dioxide, releasing methane as a by-product. These ’methanogens’ belong to an ancient group related to bacteria, called the Archaea.



While drilling into a hot spring where there is no organic carbon to feed more conventional life, Frank Chapelle of the US Geological Survey in Columbia, South Carolina, and his colleagues identified the microbes living there from their DNA sequences1.

They were shocked to find that more than 90% of the organisms in the spring were methane-producing Archaea. The technician "freaked out," recalls Chapelle, assuming she’d made a dreadful mistake. In most places, such microbes make up only 2 or 3% of microbial life.

Life - in space and time

Biologists have speculated for many years that hydrogen-powered ecosystems could exist beneath the ground. The methanogen community suggests they were right, says astronomer and astrobiologist Richard Taylor of the Probability Research Group in London.

"As long as there’s subsurface water and enough chemical fuel, you can get microbial life," says Taylor. He thinks that life began in such environments: "It’s life on the surface that’s unusual," he says.

Many bodies in the Solar System and the Universe could harbour similar conditions. "I suspect it’s going to turn out that life is extremely common," says Taylor.

Mars and Jupiter’s moon Europa have both been suggested as places where life could exist on hydrogen, today or in the past. If this is so, says microbiologist Julian Hiscox of the University of Reading, UK, it will be several kilometres below the surface, well beyond the reach of any investigations so far.

Probing these environments is going to cost "an awful lot of money", warns Hiscox. A cheaper alternative, he says might be to look for biologically produced methane in martian meteorites on Earth.

Also, Hiscox says, the geological activity necessary to produce hydrogen may have stopped long ago on Mars, and be absent altogether on Europa.

The finding may give us an insight into life in time as well as space. Chapelle thinks that hydrogen may have been accessible and abundant enough on the young Earth to provide the energy for the earliest life.

References

  1. Chapelle, F. H. A hydrogen-based subsurface microbial community dominated by methanogens. Nature, 415, 312 - 315, (2002).


JOHN WHITFIELD | © Nature News Service
Further information:
http://www.nature.com/nsu/020114/020114-7.html

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>