Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Life, as it was in the beginning?


200 meters below Idaho, bacteria are living on basalt.

A new type of Earth ecosystem could be found on other planets.

Scientists have found a community of microbes unlike anything else on Earth. Conditions in this ecosystem could mimic those on Earth when life began, and might exist elsewhere in today’s Solar System.

Home to the microbes is a hot spring 200 metres beneath the US state of Idaho. Their lives owe nothing to the Sun. They generate energy by combining hydrogen from rocks with carbon dioxide, releasing methane as a by-product. These ’methanogens’ belong to an ancient group related to bacteria, called the Archaea.

While drilling into a hot spring where there is no organic carbon to feed more conventional life, Frank Chapelle of the US Geological Survey in Columbia, South Carolina, and his colleagues identified the microbes living there from their DNA sequences1.

They were shocked to find that more than 90% of the organisms in the spring were methane-producing Archaea. The technician "freaked out," recalls Chapelle, assuming she’d made a dreadful mistake. In most places, such microbes make up only 2 or 3% of microbial life.

Life - in space and time

Biologists have speculated for many years that hydrogen-powered ecosystems could exist beneath the ground. The methanogen community suggests they were right, says astronomer and astrobiologist Richard Taylor of the Probability Research Group in London.

"As long as there’s subsurface water and enough chemical fuel, you can get microbial life," says Taylor. He thinks that life began in such environments: "It’s life on the surface that’s unusual," he says.

Many bodies in the Solar System and the Universe could harbour similar conditions. "I suspect it’s going to turn out that life is extremely common," says Taylor.

Mars and Jupiter’s moon Europa have both been suggested as places where life could exist on hydrogen, today or in the past. If this is so, says microbiologist Julian Hiscox of the University of Reading, UK, it will be several kilometres below the surface, well beyond the reach of any investigations so far.

Probing these environments is going to cost "an awful lot of money", warns Hiscox. A cheaper alternative, he says might be to look for biologically produced methane in martian meteorites on Earth.

Also, Hiscox says, the geological activity necessary to produce hydrogen may have stopped long ago on Mars, and be absent altogether on Europa.

The finding may give us an insight into life in time as well as space. Chapelle thinks that hydrogen may have been accessible and abundant enough on the young Earth to provide the energy for the earliest life.


  1. Chapelle, F. H. A hydrogen-based subsurface microbial community dominated by methanogens. Nature, 415, 312 - 315, (2002).

JOHN WHITFIELD | © Nature News Service
Further information:

More articles from Life Sciences:

nachricht How a fungus inhibits the immune system of plants
27.10.2016 | Julius-Maximilians-Universität Würzburg

nachricht The gene of autumn colours
27.10.2016 | Hokkaido University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>