Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding the Chemistry of Ionic Liquids for Nuclear Fuel Reprocessing

12.09.2006
With the rising cost and dwindling supply of fossil fuels, nuclear power may again be considered a plausible energy option in the U.S. Safety is the public’s major concern, and researchers at the U.S. Department of Energy’s Brookhaven National Laboratory are addressing one important aspect of that issue by investigating materials called ionic liquids. If these liquid salts were to be used in nuclear fuel reprocessing – the chemical removal of reusable nuclear material from spent nuclear reactor fuel – the risk of unintended nuclear chain reactions may be substantially reduced.

At the 232nd national meeting of the American Chemical Society in San Francisco, Brookhaven Lab chemist James Wishart will present his research on how ionic liquids containing the element boron react with radiation. His talk will be given at the Grand Hyatt Hotel’s Dolores Room on Monday, September 11, at 3:20 p.m. Pacific Time.

Ionic liquids, which contain only electrically charged molecules known as ions, have several properties that make them attractive as an alternative medium for nuclear fuel reprocessing. These include low volatility, low combustibility, and resistance to being electrochemically oxidized or reduced. In 2001, researchers at DOE’s Los Alamos National Laboratory calculated that reprocessing plutonium in boron-containing ionic liquids could substantially reduce the risk of nuclear accidents that involve unintended chain reactions. A particular isotope of boron can “poison” a chain reaction by strongly absorbing the neutrons that propagate the chain.

“Compared to current aqueous systems used for reprocessing plutonium, boron-containing ionic liquids can hold up to a hundred times more dissolved plutonium before reaching the critical threshold – that is, before the plutonium sustains a nuclear chain reaction,” Wishart said. “Thus, there would be far less chance of an accident.”

There are several ways to include boron in ionic liquids. One direct way is to make ionic liquids using negatively charged ions, called anions, that contain boron. This method may not produce a liquid with the melting point or viscosity needed. Another way is to add a material containing a lot of boron – for example, carborane – to an ionic liquid with the desired melting point, viscosity and other properties.

Brookhaven’s Wishart and former postdoctoral researchers Tomasz Szreder and Alison Funston, with collaborators from the University of California, Riverside, have investigated the radiation chemistry of ionic liquids prepared from carborane and a boron-containing anion. They found that electrons ejected from molecules by radiation leads to decomposition of the carborane. To prevent this decomposition, the researchers propose including positively charged ions, like pyridinium, that can intercept the electrons before they react with the carborane. The reactions are reversible so the materials can be used over and over again.

“In U.S. nuclear power reactors, the fuel is only used once-through and a lot of energy remains in the spent fuel that is destined for disposal,” Wishart said. “In the future, we may instead reprocess fuel to use in current reactors and in a new type of reactor now under development. We would extract more energy from the same amount of natural resources and produce less nuclear waste. Advanced reprocessing would also reduce long-lived radioactive waste. The ionic liquids that we study could be a better medium for reprocessing nuclear fuel and nuclear waste than the currently used media.”

DOE’s Office of Basic Energy Sciences within the Office of Science and Brookhaven’s Laboratory Directed Research and Development Program funded this research.

Kay Cordtz | EurekAlert!
Further information:
http://www.bnl.gov

Further reports about: Nuclear Plutonium Wishart carborane ionic ionic liquids reactor

More articles from Life Sciences:

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

nachricht UK chemistry researchers develop catalyst that mimics the z-scheme of photosynthesis
26.06.2017 | University of Kentucky

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>