Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodegradable 'napkin' could help quickly detect, identify biohazards

12.09.2006
Detecting bacteria, viruses and other dangerous substances could soon be as simple as wiping a napkin or paper towel across a table, according to Cornell University researchers.

Once fully developed, the new absorbent wipe, embedded with nanofibers containing antibodies to numerous biohazards, could be used by virtually anyone to rapidly uncover pathogens in meat packing plants, hospitals, cruise ships, airplanes and other commonly contaminated areas, the researchers say.

The materials for this new process, which is still being tested in the laboratory, were described today at the 232nd national meeting of the American Chemical Society, the world's largest scientific society.

"It's very inexpensive, it wouldn't require that someone be highly trained to use it, and it can be activated for whatever you want to find," said Margaret Frey, Ph.D., Lois and Mel Tukman assistant professor of textiles and apparel at Cornell. "So if you're working in a meat packing plant, for instance, you could swipe it across some hamburger and quickly and easily detect E. coli bacteria." If biohazards were detected, she added, the area could be scoured and re-tested to confirm the contaminants were destroyed.

... more about:
»Pathogen »biohazard »fabric »nanofibers

In their experiments, Frey and her colleagues formed nanofibers with diameters between 100 nanometers and 2 microns (a human hair is about 80,000 nanometers wide). On these nanofibers, the researchers created platforms made of biotin, a B-vitamin and the protein streptavidin to hold the antibodies. The nanofibers, which are made of polyactide (PLA) - a polymer compound made from corn - can be used to make non-woven wipers or swabs. To reduce costs, the nanofibers also could be incorporated into conventional paper products.

"The fabric basically acts as a sponge that you can use to dip in a liquid or wipe across a surface," Frey said. "As you do that, antibodies in the fabric are going to selectively latch onto whatever pathogen that they match. Using this method we should, in theory, be able to quickly activate the fabric to detect whatever is the hazard of the week, whether it is bird flu, mad cow disease or anthrax."

For now, identifying the collected pathogens requires a separate analytical step. But Frey and colleagues are working on methods, such as color changes in the fabric, which would instantly identify the contaminant.

"We're probably still a few years away from having this ready for the real world," Frey said, "but I really believe there is a place for this type of product that can be used by people with limited training to provide a fast indication of whether a biohazard is present."

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

Further reports about: Pathogen biohazard fabric nanofibers

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>