Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodegradable 'napkin' could help quickly detect, identify biohazards

12.09.2006
Detecting bacteria, viruses and other dangerous substances could soon be as simple as wiping a napkin or paper towel across a table, according to Cornell University researchers.

Once fully developed, the new absorbent wipe, embedded with nanofibers containing antibodies to numerous biohazards, could be used by virtually anyone to rapidly uncover pathogens in meat packing plants, hospitals, cruise ships, airplanes and other commonly contaminated areas, the researchers say.

The materials for this new process, which is still being tested in the laboratory, were described today at the 232nd national meeting of the American Chemical Society, the world's largest scientific society.

"It's very inexpensive, it wouldn't require that someone be highly trained to use it, and it can be activated for whatever you want to find," said Margaret Frey, Ph.D., Lois and Mel Tukman assistant professor of textiles and apparel at Cornell. "So if you're working in a meat packing plant, for instance, you could swipe it across some hamburger and quickly and easily detect E. coli bacteria." If biohazards were detected, she added, the area could be scoured and re-tested to confirm the contaminants were destroyed.

... more about:
»Pathogen »biohazard »fabric »nanofibers

In their experiments, Frey and her colleagues formed nanofibers with diameters between 100 nanometers and 2 microns (a human hair is about 80,000 nanometers wide). On these nanofibers, the researchers created platforms made of biotin, a B-vitamin and the protein streptavidin to hold the antibodies. The nanofibers, which are made of polyactide (PLA) - a polymer compound made from corn - can be used to make non-woven wipers or swabs. To reduce costs, the nanofibers also could be incorporated into conventional paper products.

"The fabric basically acts as a sponge that you can use to dip in a liquid or wipe across a surface," Frey said. "As you do that, antibodies in the fabric are going to selectively latch onto whatever pathogen that they match. Using this method we should, in theory, be able to quickly activate the fabric to detect whatever is the hazard of the week, whether it is bird flu, mad cow disease or anthrax."

For now, identifying the collected pathogens requires a separate analytical step. But Frey and colleagues are working on methods, such as color changes in the fabric, which would instantly identify the contaminant.

"We're probably still a few years away from having this ready for the real world," Frey said, "but I really believe there is a place for this type of product that can be used by people with limited training to provide a fast indication of whether a biohazard is present."

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

Further reports about: Pathogen biohazard fabric nanofibers

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>