Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compounds in cranberry juice show promise as alternatives to antibiotics

12.09.2006
A group of tannins found primarily in cranberries can transform E. coli bacteria, a class of microorganisms responsible for a host of human illnesses, including urinary tract infections, in ways that render them unable to initiate an infection.

Compounds in cranberry juice have the ability to change E. coli bacteria, a class of microorganisms responsible for a host of human illnesses (everything from kidney infections to gastroenteritis to tooth decay), in ways that render them unable to initiate an infection. The results of this new research by scientists at Worcester Polytechnic Institute (WPI) suggest that the cranberry may provide an alternative to antibiotics, particularly for combating E. coli bacteria that have become resistant to conventional treatment.

The new findings, which will be presented on Sunday, Sept. 10, at the annual meeting of the American Chemical Society in San Francisco, for the first time begin to paint a detailed picture of the biochemical mechanisms that may underlie a number of beneficial health effects of cranberry juice that have been reported in other studies over the years.

Many of those studies have focused on the ability of cranberry juice to prevent urinary tract infections (UTIs), which each year affect eight million people–mostly women, the elderly, and infants--resulting in $1.6 billion in health care costs. Until now, scientists have not understood exactly how cranberry juice prevents UTIs and other bacterial infections, though they have suspected that compounds in the juice somehow prevent bacteria from adhering to the lining of the urinary tract. The new findings reveal how the compounds interfere with adhesion at the molecular level.

The new results will be incorporated in two presentations during a session that runs from 8:30 to 11:40 a.m. in the Windsor Room of the Sir Francis Drake Hotel.

The research, by Terri Camesano, associate professor of chemical engineering at WPI, and graduate students Yatao Liu and Paola Pinzon-Arango, and funded, in part, by the National Science Foundation, shows that a group of tannins (called proanthocyanidins) found primarily in cranberries affect E. coli in three devastating ways, all of which prevent the bacteria from adhering to cells in the body, a necessary first step in all infections:

They change the shape of the bacteria from rods to spheres.

They alter their cell membranes.

They make it difficult for bacteria to make contact with cells, or from latching on to them should they get close enough.

For most of these effects, the impact on bacteria was stronger the higher the concentration of either cranberry juice or the tannins, suggesting that whole cranberry products and juice that has not been highly diluted may have the greatest health effects.

The new results build on previously published work, in which Camesano and her team showed that cranberry juice causes tiny tendrils (known as fimbriae) on the surface of the type of E. coli bacteria responsible for the most serious types of UTIs to become compressed. Since the fimbriae make it possible for the bacteria to bind tightly to the lining of the urinary tract, the change in shape greatly reduces the ability of the bacteria to stay put long enough to initiate an infection.

More recently, Camesano and Liu have shown that chemical changes caused by cranberry juice also create an energy barrier that keeps the bacteria from getting close to the urinary tract lining in the first place.

New work by Camesano and Pinzon-Arango shows that cranberry juice can transform E. coli bacteria in even more radical ways. The researchers grew E. coli over extended periods in solutions containing various concentrations of either cranberry juice or tannins. Over time, the normally rod-shaped bacteria became spherical--a transformation that has never before been observed in E. coli.

Remarkably, the E. coli bacteria, all of which fall into a class called gram-negative bacteria, began behaving like gram-positive bacteria--another never-before-seen phenomenon. Since gram-negative and gram-positive bacteria differ primarily in the structure of their cell membranes, the results suggest that the tannins in cranberry juice can alter the membranes of E. coli.

A final, more preliminary result that will be presented at the ACS meeting suggests that E. coli bacteria exposed to cranberry juice appear to lose the ability to secrete indole, a molecule involved in a form of bacterial communication called quorum sensing. E. coli use quorum sensing to determine when there are enough bacteria present at a certain location to initiate a successful infection.

"We are beginning to get a picture of cranberry juice and, in particular, the tannins found in cranberries as, potentially potent antibacterial agents," Camesano says. "These results are surprising and intriguing, particularly given the increasing concern about the growing resistance of certain disease-causing bacteria to antibiotics."

Michael Dorsey | EurekAlert!
Further information:
http://www.wpi.edu

Further reports about: Camesano Coli E. coli E. coli bacteria Urinary cell membrane cranberry urinary tract

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>