Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Crabby' compound that skewers bacteria could prevent medical implant infections

12.09.2006
A chemical compound found in crabs and shrimp that has long been known to have certain medicinal value also can act like a "bed of nails," fending off microbes seeking to colonize wound dressings, catheters and other implantable medical devices, according to Montana State University researchers. Using the compound to coat these medical devices, they say, could help prevent thousands of bacterial and yeast infections annually.

The preliminary finding, by Philip Stewart, Ph.D., director of MSU's Center for Biofilm Engineering, and Ross Carlson, Ph.D., assistant professor of chemical engineering, was described today at the 232nd national meeting of the American Chemical Society, the world's largest scientific society.


Biofilms, slimy layers of Staphylococcus epidermidis bacteria (above) and other harmful microbes that form on catheters and other implantable medical devices, are considered the leading cause of bacterial infections in the United States. Coating these devices with chitosan, a medicinal compound derived from crabs and shrimp, could prevent thousands of infections each year, according to new research presented at the 232nd American Chemical Society National Meeting in San Francisco. Credit: (Photo courtesy of Ross Carlson and Betsey Pitts, Montana State University – Bozeman)

In their laboratory studies, chitosan - a sugar in the cells of crabs and shrimp - repelled bacteria and yeast, effectively preventing these microbes from forming slimy, glue-like layers of infectious cells, known as biofilms, Stewart said. These biofilms account for up to 65 percent of the bacterial infections in the United States, according to the Centers for Disease Control and Prevention.

The researchers say that while chitosan is well known for its antimicrobial activity, this is the first time its anti-biofilm activity has been described.

... more about:
»Implant »Medical »microbe »prevent

"Coating chitosan onto a surface seems to stop bacteria and yeast from colonizing that surface," Stewart said. "Chitosan almost acts like a bed of nails. If a microbe alights on it, the chitosan skewers it or causes it to leak. That might not kill microbes outright, but it certainly discourages them from establishing a foothold."

Biofilms are considered the leading cause of up to 400,000 cases of catheter-related, bloodstream infections each year, Stewart said. In addition, biofilms can arise on virtually any device implanted in the body, including mechanical heart valves, contact lens, artificial hips and knees, and breast implants. Once a biofilm-induced infection takes hold, it can be difficult to treat and often requires the surgical removal of the affected device, he said.

If further testing in animals and humans proves successful, coating these devices with chitosan could become an important first line of defense, according to Stewart. "I don't want to claim we've fully solved the problem here," he said, "but … I think over the next 10 years we're going to be seeing new technologies in the form of coatings that will prevent or at least reduce the incidence of infection."

Chitosan is derived from chitin, the main component of crustacean shells. It is sold commercially as a nutritional supplement and is an FDA-approved material for staunching blood loss. Chitosan also is used in biomaterials, as a thickener in cosmetics and a flocculating agent in water treatment. As a biomaterial, chitosan has a track record for its non-toxicity, biocompatibility, ability to promote healing and its inherent antimicrobial properties.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

Further reports about: Implant Medical microbe prevent

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>