Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Conversation stoppers' fight deadly bacterial infections

12.09.2006
Bacterial infections are becoming more deadly worldwide due to increased resistance to antibiotics. Now, chemists at the University of Wisconsin-Madison have developed a powerful strategy to fight these deadly infections: Instead of killing the bacteria directly, the scientists designed a group of compounds that can block the chemical signals that the bacteria use to communicate in an effort to stop their spread.

These compounds, small organic molecules that they call 'conversation stoppers,' could help deliver a powerful one-two punch to knock out deadly infections when combined with the killing power of antibiotics, the scientists say. In addition, these 'conversation stoppers' do not target bacterial growth, so the potential for the development of bacterial resistance is minimized. This research, which is funded by the National Institutes of Health, could lead to new drugs to fight infections, was described today at the 232nd national meeting of the American Chemical Society.

"There is an urgent, global need for new antibacterial therapies," says study leader Helen Blackwell, Ph.D., an assistant professor of chemistry at the University. "The ability to interfere with bacterial virulence by intercepting bacterial communication networks represents a new therapeutic approach and is clinically timely."

Bacteria use chemical signals to initiate the majority of human infections. When these signals reach a certain threshold (in a process known as quorum sensing), pathogenic bacteria will change their mode of growth and produce virulence factors that lead to infection. These chemical signals also trigger the bacteria to produce slimy biofilms that cloak the bacteria and make the colony physically resistant to antibiotics.

... more about:
»Blackwell »bacteria »compounds »conversation »deadly

Attempts to block bacterial quorum sensing are being conducted by a growing number of research groups. Many of these studies have focused on a group of small molecules called N-acylated L-homoserine lactones (AHLs), which are key signaling molecules used by Gram-negative bacteria.

But discovery of these molecules has been a relatively slow process until now. Blackwell and her associates have found that the use of 'microwave-assisted chemistry,' a novel laboratory technique for heating chemical reactions using microwaves, can dramatically accelerate the synthesis of AHL analogs that can either block or stimulate bacterial communication.

"Using microwave heating and combinatorial techniques to generate libraries of molecules, we can now produce and test in one day a group of compounds that previously would have taken a month to study using conventional techniques," Blackwell says.

So far, the researchers have identified at least two compounds that show particular promise at blocking biofilm formation in Pseudomonas aeruginosa, a bacterium that is a common cause of death in people with cystic fibrosis, AIDS and severe burns. In collaborative research with Fred Ausubel, Ph.D., a molecular biologist at Massachusetts General Hospital in Boston, Blackwell and her colleagues demonstrated that several of these compounds can extend the lives of worms infected with P. aeruginosa.

Recently, Blackwell designed 'conversation stoppers' that are specific to one bacterial strain and not others, allowing more efficient, selective attack on specific bacterial strains. This selectivity can help avoid disrupting beneficial bacteria, such as those in the gut that aid digestion, she says.

Some 'conversation stoppers' also hold promise for fighting crop diseases, biofilm formation on medical implants and catheters, and even bioterror agents. More studies are needed, says Blackwell, adding that her compounds haven't been tested in humans or plants but says that those tests are anticipated.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

Further reports about: Blackwell bacteria compounds conversation deadly

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>