Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants give up answers in the war on bacteria

11.09.2006
Back-to-back scientific papers are offering a revolutionary look at the battlefield on which plant diseases are fought – and often lost – to bacteria.

The laboratory of Sheng Yang He at Michigan State University has changed the textbook description of a plant’s surface terrain and is unveiling new knowledge of how bacterial pathogens invade plants and take hold. The most recent paper, published in the Sept. 8 edition of Cell, redefines the role of the plant’s pores in defense against invading bacteria and how some bacteria can overpower plants.

Last month, in Science Magazine, the lab outlined a better understanding of how bacteria set up camp and destroy the plant’s ability to fight infection.

The work was funded by the National Institutes of Health and the U.S. Department of Energy and supported by the Michigan Agricultural Experiment Station.

“We’ve known for 100 years that bacterial pathogens cause illness in crops, yet we still don’t understand how they produce disease,” said He, a professor of plant biology, plant pathology, and microbiology and molecular genetics. “It’s very frustrating. How does this little thing do such great damage to plants?”
... more about:
»Melotto »plant’s »stomata

But this summer, Maeli Melotto, a research associate, and Bill Underwood, a graduate student, in He’s laboratory, shed light on the behavior of one the plant’s first lines of defense against disease. Pores called stomata are like tiny mouths that open and close during photosynthesis, exchanging gases. In sunshine, the stomata open. In darkness, they close to conserve water.

It has been assumed that these tiny ports were busy with their photosynthesis business and were merely unwitting doorways to invading bacteria on a plant’s surface. Melotto and Underwood, however, have discovered that stomata are an intricate part of the plant’s immune system that can sense danger and respond by shutting down.

The lab performed experiments on Arabadopsis, a common laboratory plant, but the mechanisms could be universal across all land plants.

“When we started looking more closely, and put bacteria on a plant surface, stomata close. It’s like they say ‘oh, we have to close the doors!’” Melotto said. “Even if it is in bright daylight, when the stomata are supposed to be open, they close.”

Some bacteria have gotten smarter. Melotto and Underwood found that plants recognized human-infecting bacteria, such as E. coli, and kept the stomata closed to them. Plant-infecting bacteria, like those most destructive to crops, have figured out a way to reopen the shut-down ports.

It appears those plant-based bacteria produce a phytotoxin, a chemical called coronatine, to force the pores back open. For bacteria, entry is crucial to causing disease and probably survival. They could die if left lingering on the surface. Animal-based bacteria do not produce coronatine.

“Now that we know a key step in bacteria’s attack, we have something we can learn to interfere with,” Melotto said. “From this we can learn about disease resistance.”

It’s a weighty issue. Bacterial diseases can be catastrophic to crops. One disease, called fire blight, did $40 million in destruction to Michigan apple trees in 2000 alone and all but eliminated commercial pear crops in Michigan for that year.

He also sees useful human health implications. Understanding that animal pathogens, like dangerous E. coli, cannot easily gain access inside the plant helps scientists know how to best combat bacteria that cause foodborne illness. It is important to know, he explained, whether foodborne illnesses rest on the surface of an edible plant, or nestle inside, impervious to washing.

“We are thinking about the mysteries of plant pathologies, but these have broad implications,” He said. “We haven’t understood very well how plants and bacteria interact, but we’re finally seeing the light.”

Sheng Yang He | EurekAlert!
Further information:
http://www.msu.edu

Further reports about: Melotto plant’s stomata

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>