Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants give up answers in the war on bacteria

11.09.2006
Back-to-back scientific papers are offering a revolutionary look at the battlefield on which plant diseases are fought – and often lost – to bacteria.

The laboratory of Sheng Yang He at Michigan State University has changed the textbook description of a plant’s surface terrain and is unveiling new knowledge of how bacterial pathogens invade plants and take hold. The most recent paper, published in the Sept. 8 edition of Cell, redefines the role of the plant’s pores in defense against invading bacteria and how some bacteria can overpower plants.

Last month, in Science Magazine, the lab outlined a better understanding of how bacteria set up camp and destroy the plant’s ability to fight infection.

The work was funded by the National Institutes of Health and the U.S. Department of Energy and supported by the Michigan Agricultural Experiment Station.

“We’ve known for 100 years that bacterial pathogens cause illness in crops, yet we still don’t understand how they produce disease,” said He, a professor of plant biology, plant pathology, and microbiology and molecular genetics. “It’s very frustrating. How does this little thing do such great damage to plants?”
... more about:
»Melotto »plant’s »stomata

But this summer, Maeli Melotto, a research associate, and Bill Underwood, a graduate student, in He’s laboratory, shed light on the behavior of one the plant’s first lines of defense against disease. Pores called stomata are like tiny mouths that open and close during photosynthesis, exchanging gases. In sunshine, the stomata open. In darkness, they close to conserve water.

It has been assumed that these tiny ports were busy with their photosynthesis business and were merely unwitting doorways to invading bacteria on a plant’s surface. Melotto and Underwood, however, have discovered that stomata are an intricate part of the plant’s immune system that can sense danger and respond by shutting down.

The lab performed experiments on Arabadopsis, a common laboratory plant, but the mechanisms could be universal across all land plants.

“When we started looking more closely, and put bacteria on a plant surface, stomata close. It’s like they say ‘oh, we have to close the doors!’” Melotto said. “Even if it is in bright daylight, when the stomata are supposed to be open, they close.”

Some bacteria have gotten smarter. Melotto and Underwood found that plants recognized human-infecting bacteria, such as E. coli, and kept the stomata closed to them. Plant-infecting bacteria, like those most destructive to crops, have figured out a way to reopen the shut-down ports.

It appears those plant-based bacteria produce a phytotoxin, a chemical called coronatine, to force the pores back open. For bacteria, entry is crucial to causing disease and probably survival. They could die if left lingering on the surface. Animal-based bacteria do not produce coronatine.

“Now that we know a key step in bacteria’s attack, we have something we can learn to interfere with,” Melotto said. “From this we can learn about disease resistance.”

It’s a weighty issue. Bacterial diseases can be catastrophic to crops. One disease, called fire blight, did $40 million in destruction to Michigan apple trees in 2000 alone and all but eliminated commercial pear crops in Michigan for that year.

He also sees useful human health implications. Understanding that animal pathogens, like dangerous E. coli, cannot easily gain access inside the plant helps scientists know how to best combat bacteria that cause foodborne illness. It is important to know, he explained, whether foodborne illnesses rest on the surface of an edible plant, or nestle inside, impervious to washing.

“We are thinking about the mysteries of plant pathologies, but these have broad implications,” He said. “We haven’t understood very well how plants and bacteria interact, but we’re finally seeing the light.”

Sheng Yang He | EurekAlert!
Further information:
http://www.msu.edu

Further reports about: Melotto plant’s stomata

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>