Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Case and Cleveland Clinic researchers identify molecule in age-related macular degeneration

11.09.2006
A dart-like molecule that adheres to proteins in the eye is the key that turns on the uncontrolled growth of blood vessels, according to researchers at Case Western Reserve University and the Cleveland Clinic Cole Eye Institute.

Uncontrolled blood vessel growth is a major contributor to the development of age-related macular degeneration (AMD), the leading cause of blindness among people over 65 in the United States.

Robert Salomon and his graduate students Kutralanathan Renganathan and Liang Lu of Case's Department of Chemistry in the College of Arts and Sciences, found that the molecule, Carboxyethylpyrroles (CEPs), attaches to proteins found in the eye, triggering the uncontrolled growth of blood cells.

The Case researchers teamed up with Quteba Ebrahem Jonathan Sears, Amit Vasanji, John Crabb and Bela Anand-Apte and Xiaorong Gu (a Salomon group alumna), of Cleveland Clinic, to complete the study titled Carboxyethlpyrrole oxidative protein modifications stimulate neovascularization: Implications for age-related macular degeneration."

The results of their collaborative work were published in the recent Proceedings of the National Academy of Science (PNAS).

AMD is a progressive disease that results in the severe loss of vision. The early stages of AMD are characterized as "dry," with the disease advancing to the "wet form" as the retina, the part of the eye responsible for central vision, becomes infused with fluid from leaky new blood vessels, during a process called neovascularization. The unchecked blood vessel growth, or angiogenesis, in the retina accounts for 80% of the vision loss in the advanced stages of AMD.

The retina cells that detect light contain polyunsaturated fatty lipids that are exquisitely sensitive to damage by oxygen. Even in healthy eyes, these cells are renewed every ten days. The researchers at Case and Cleveland Clinic used a method developed by Salomon to specifically detect and measure the amount of CEPs found in the eye.

The researchers did in vivo animal studies with membranes from chicken eggs and rat eyes and found that CEPs attached to proteins induce angiogenesis. They also found that the protein part of CEP-protein adducts is not important for producing the growth of the blood vessels. Rather, the actual CEP is the cause of angiogenesis.

In an attempt to block CEP from triggering the angiogenesis process, "we are now trying to find the receptors – the keyholes – in the retina cells that are activated by CEPs," said Salomon. "We are also designing drugs that can mop up the CEPs or prevent their formation."

The research is supported by an Ohio Board of Regents Biomedical Research Technology Transfer Award to the Cole Eye Institute, National Institutes of Health Grants as well as the Foundation Fighting Blindness and the American Health Association.

For more than three decades, Salomon has worked in the area of lipid research. His work centers on the oxidation of lipids in the body that contributes to a host of diseases including glaucoma, keratitis and other eye diseases as well as Alzheimer's disease, atherosclerosis, autism and end-stage renal disease. He discovered many chemical transformations that occur as a result of lipid oxidation, and generated some of the first molecular tools that have been used in clinical studies relating the hardening of the arteries in heart disease. In the hope of preventing the formation of toxic molecules in the eye, through the combination of oxygen with lipids, Salomon is now studying the processes that generate them with a new grant from the National Eye Institute of the National Institutes of Health.

Susan Griffith | EurekAlert!
Further information:
http://www.case.edu

Further reports about: Angiogenesis CEP Degeneration Macular age-related clinic

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>