Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Case and Cleveland Clinic researchers identify molecule in age-related macular degeneration

11.09.2006
A dart-like molecule that adheres to proteins in the eye is the key that turns on the uncontrolled growth of blood vessels, according to researchers at Case Western Reserve University and the Cleveland Clinic Cole Eye Institute.

Uncontrolled blood vessel growth is a major contributor to the development of age-related macular degeneration (AMD), the leading cause of blindness among people over 65 in the United States.

Robert Salomon and his graduate students Kutralanathan Renganathan and Liang Lu of Case's Department of Chemistry in the College of Arts and Sciences, found that the molecule, Carboxyethylpyrroles (CEPs), attaches to proteins found in the eye, triggering the uncontrolled growth of blood cells.

The Case researchers teamed up with Quteba Ebrahem Jonathan Sears, Amit Vasanji, John Crabb and Bela Anand-Apte and Xiaorong Gu (a Salomon group alumna), of Cleveland Clinic, to complete the study titled Carboxyethlpyrrole oxidative protein modifications stimulate neovascularization: Implications for age-related macular degeneration."

The results of their collaborative work were published in the recent Proceedings of the National Academy of Science (PNAS).

AMD is a progressive disease that results in the severe loss of vision. The early stages of AMD are characterized as "dry," with the disease advancing to the "wet form" as the retina, the part of the eye responsible for central vision, becomes infused with fluid from leaky new blood vessels, during a process called neovascularization. The unchecked blood vessel growth, or angiogenesis, in the retina accounts for 80% of the vision loss in the advanced stages of AMD.

The retina cells that detect light contain polyunsaturated fatty lipids that are exquisitely sensitive to damage by oxygen. Even in healthy eyes, these cells are renewed every ten days. The researchers at Case and Cleveland Clinic used a method developed by Salomon to specifically detect and measure the amount of CEPs found in the eye.

The researchers did in vivo animal studies with membranes from chicken eggs and rat eyes and found that CEPs attached to proteins induce angiogenesis. They also found that the protein part of CEP-protein adducts is not important for producing the growth of the blood vessels. Rather, the actual CEP is the cause of angiogenesis.

In an attempt to block CEP from triggering the angiogenesis process, "we are now trying to find the receptors – the keyholes – in the retina cells that are activated by CEPs," said Salomon. "We are also designing drugs that can mop up the CEPs or prevent their formation."

The research is supported by an Ohio Board of Regents Biomedical Research Technology Transfer Award to the Cole Eye Institute, National Institutes of Health Grants as well as the Foundation Fighting Blindness and the American Health Association.

For more than three decades, Salomon has worked in the area of lipid research. His work centers on the oxidation of lipids in the body that contributes to a host of diseases including glaucoma, keratitis and other eye diseases as well as Alzheimer's disease, atherosclerosis, autism and end-stage renal disease. He discovered many chemical transformations that occur as a result of lipid oxidation, and generated some of the first molecular tools that have been used in clinical studies relating the hardening of the arteries in heart disease. In the hope of preventing the formation of toxic molecules in the eye, through the combination of oxygen with lipids, Salomon is now studying the processes that generate them with a new grant from the National Eye Institute of the National Institutes of Health.

Susan Griffith | EurekAlert!
Further information:
http://www.case.edu

Further reports about: Angiogenesis CEP Degeneration Macular age-related clinic

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>