Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Granada-Based Scientists Prove That The Inhibition Of The Parp-1 Gene Slows Down The Growth Of Tumors

11.09.2006
Researchers from IBIMER, a University of Granada’s institute for the research of biopathology and regenerative medicine, in collaboration with scientists of the Lopez Neyra institute of parasitology and biomedicine, have studied the functions of a gene, parp-1, in the processes of initiation and progression of tumours in experimental models.

They have found out that the lack or inhibition of the protein it represents decreases the speed at which neoplasias occur, as it prevents the inflammation that contributes to the proliferation of cancer cells. Part of the conclusions of this research work are published in the June edition of the journal 'Cancer Research'.

Experts have used a model of experimental carcinogenesis, that is, have caused cancer in normal experimental mice and also in mice knocked out in that specific gene. After many experiments, they have found out that apart from collaborating to the DNA repair, the parp-1 gene has an influence on the growth of the carcinoma. Moreover, the gene’s lack of expression obstructs the angiogenesis process, which causes the creation of new blood vessels that allow sick cells to survive by receiving nourishment from the host organism.

The novelty of this finding is the possibility of designing new strategies that inhibit protein parp-1 activity in order to stop the progression of cancer. The next step consists of checking in experimentation models the efficacy of inhibitors in the treatment of cancer processes. So far, experts have used molecular medicines to carry out this delay process.

... more about:
»PARP-1 »decrease »experimental

Researchers are trying to find more efficient therapeutical strategies that reinforce the action of antitumoral agents and decrease the administered radiation or chemotherapy doses. This way, the side effects will also decrease.

USA-based scientists have recently proven that this enzyme which repairs sick cells and keeps cell energy could be useful for the treatment of Huntington’s disease and other pathologies characterised by a low level of energy in cells. This is what an article published in the Chemistry & Biologyen’s August edition reveals, written by researchers of the Institute for Neurodegenerative Disease of Massachusetts General Hospital. These experts describe a new inhibitor of polymerase Parp1 which protects the cells affected by the Huntington’s disease in a lab.

Ismael Gaona | alfa
Further information:
http://www.andaluciainvestiga.com

Further reports about: PARP-1 decrease experimental

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>