Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU, US and Canada to collaborate to increase understanding of the genetic make-up of human diseases

08.09.2006
The European Commission, US National Institutes of Health and Genome Canada are today announcing a global collaborative research programme designed to lead to better understanding of human diseases.

Although many genes have been linked to major diseases or conditions such as cancer, heart disease, neurological disorders, diabetes and obesity, research is still needed into why these genes are important and what their role is in the disease. As mice and humans share 99% of their genetic make-up, this international collaborative programme will study the activity of genes in mice, using a process that “knocks out” specific genes. This programme will help researchers unravel the genetic networks underlying disease. The project will cost a total of €56.6m, with the EU’s Research Framework Programme contributing €13m. The information on mutations in the mouse genome generated by the programme will be rapidly accessible to the worldwide scientific community, constituting a significant resource to help translate basic research into improvements in human health.

European Science and Research Commissioner Janez Potocnik welcomed the joint programme, saying “International scientific collaboration is in the interests of us all; pooling knowledge will increase our chance to make discoveries that can benefit human health. There is so much we still don’t know about the effect of genes on the development of our major diseases. Research like this gives hope to many of those suffering serious illnesses and their families.”

Our genetic material is composed of about 28 000 different genes. However, just identifying a gene does not tell much about its potential function in health and disease. To investigate this it is necessary to mutate the gene in a model organism that is closely related to humans. Genetically, the mouse is the model organism of choice for human disease research, as about 99% of human genes are found in the mouse genome and vice versa. In addition, a powerful mutagenesis technology has been developed, that currently can only be applied in the mouse to inactivate a specific gene in a time- and space-dependent manner. This approach allows researchers to unravel very precisely the genetic networks underlying disease.

... more about:
»Canada »Collaborative »Genom »Human »Resource »mutagenesis

Mutations in all the genes of a mammalian genome

The European Commission, US National Institutes of Health (NIH) and Genome Canada will finance the largest collaborative research effort (56.6 m€) worldwide after the Human Genome Project to produce mutations in all the mouse genes, using gene trapping and gene targeting approaches. This project will enable mouse mutants to be generated in any laboratory in a standardised and cost-effective manner, thereby making them available to a much wider biomedical research community than has been possible previously. This mutant resource will be of crucial importance for health research since it will allow scientists to dissect gene functions within a living organism (in vivo) more accurately and to mimic human disease conditions more closely. In doing so, it will also speed up significantly drug developments for the treatment of human diseases.

World-wide collaborative research effort in mouse mutagenesis

This world-wide mouse mutagenesis collaborative effort networks three major initiatives: The EUCOMM project financed by the European Commission with 13m€, the NorCOMM project which received 4.4 m€ from the Canadian government and the Knockout Mouse Project (KOMP) project financed by the US-NIH with 39.2 m€. A steering committee composed of the scientists leading these three research projects and representatives from the funding agencies will coordinate this collaborative effort to ensure complementarity and to avoid overlaps. These leading scientists and funding agencies have agreed to make freely accessible to the scientific community the mutant resources generated in their respective projects, thereby maximising the benefit of each of these projects. Other funding agencies and scientific projects involved in similar mouse mutagenesis programmes in other countries are also encouraged to join in this present effort provided they will agree to the same principle.

EU invests €135 million in mouse functional genomics

The European Union is a major sponsor of mouse functional genomics research. Since 2002, fifteen ongoing European collaborative projects have received a total of €135 million from the EU’s Fifth and Sixth Framework Programmes. They are using the mouse as a model for elucidating gene functions in health and disease. Some of these projects are developing new tools, technologies, and resources that are essential for the success of mouse functional genomics. Other projects are using mouse models to investigate the functions of key genes involved in important biological processes such as hearing, muscle formation, kidney function angiogenesis embryonic stem cell differentiation and the immune system.

Wappelhorst Michael | alfa
Further information:
http://www.ec.europa.eu/research

Further reports about: Canada Collaborative Genom Human Resource mutagenesis

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>