Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU, US and Canada to collaborate to increase understanding of the genetic make-up of human diseases

08.09.2006
The European Commission, US National Institutes of Health and Genome Canada are today announcing a global collaborative research programme designed to lead to better understanding of human diseases.

Although many genes have been linked to major diseases or conditions such as cancer, heart disease, neurological disorders, diabetes and obesity, research is still needed into why these genes are important and what their role is in the disease. As mice and humans share 99% of their genetic make-up, this international collaborative programme will study the activity of genes in mice, using a process that “knocks out” specific genes. This programme will help researchers unravel the genetic networks underlying disease. The project will cost a total of €56.6m, with the EU’s Research Framework Programme contributing €13m. The information on mutations in the mouse genome generated by the programme will be rapidly accessible to the worldwide scientific community, constituting a significant resource to help translate basic research into improvements in human health.

European Science and Research Commissioner Janez Potocnik welcomed the joint programme, saying “International scientific collaboration is in the interests of us all; pooling knowledge will increase our chance to make discoveries that can benefit human health. There is so much we still don’t know about the effect of genes on the development of our major diseases. Research like this gives hope to many of those suffering serious illnesses and their families.”

Our genetic material is composed of about 28 000 different genes. However, just identifying a gene does not tell much about its potential function in health and disease. To investigate this it is necessary to mutate the gene in a model organism that is closely related to humans. Genetically, the mouse is the model organism of choice for human disease research, as about 99% of human genes are found in the mouse genome and vice versa. In addition, a powerful mutagenesis technology has been developed, that currently can only be applied in the mouse to inactivate a specific gene in a time- and space-dependent manner. This approach allows researchers to unravel very precisely the genetic networks underlying disease.

... more about:
»Canada »Collaborative »Genom »Human »Resource »mutagenesis

Mutations in all the genes of a mammalian genome

The European Commission, US National Institutes of Health (NIH) and Genome Canada will finance the largest collaborative research effort (56.6 m€) worldwide after the Human Genome Project to produce mutations in all the mouse genes, using gene trapping and gene targeting approaches. This project will enable mouse mutants to be generated in any laboratory in a standardised and cost-effective manner, thereby making them available to a much wider biomedical research community than has been possible previously. This mutant resource will be of crucial importance for health research since it will allow scientists to dissect gene functions within a living organism (in vivo) more accurately and to mimic human disease conditions more closely. In doing so, it will also speed up significantly drug developments for the treatment of human diseases.

World-wide collaborative research effort in mouse mutagenesis

This world-wide mouse mutagenesis collaborative effort networks three major initiatives: The EUCOMM project financed by the European Commission with 13m€, the NorCOMM project which received 4.4 m€ from the Canadian government and the Knockout Mouse Project (KOMP) project financed by the US-NIH with 39.2 m€. A steering committee composed of the scientists leading these three research projects and representatives from the funding agencies will coordinate this collaborative effort to ensure complementarity and to avoid overlaps. These leading scientists and funding agencies have agreed to make freely accessible to the scientific community the mutant resources generated in their respective projects, thereby maximising the benefit of each of these projects. Other funding agencies and scientific projects involved in similar mouse mutagenesis programmes in other countries are also encouraged to join in this present effort provided they will agree to the same principle.

EU invests €135 million in mouse functional genomics

The European Union is a major sponsor of mouse functional genomics research. Since 2002, fifteen ongoing European collaborative projects have received a total of €135 million from the EU’s Fifth and Sixth Framework Programmes. They are using the mouse as a model for elucidating gene functions in health and disease. Some of these projects are developing new tools, technologies, and resources that are essential for the success of mouse functional genomics. Other projects are using mouse models to investigate the functions of key genes involved in important biological processes such as hearing, muscle formation, kidney function angiogenesis embryonic stem cell differentiation and the immune system.

Wappelhorst Michael | alfa
Further information:
http://www.ec.europa.eu/research

Further reports about: Canada Collaborative Genom Human Resource mutagenesis

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>