Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU, US and Canada to collaborate to increase understanding of the genetic make-up of human diseases

08.09.2006
The European Commission, US National Institutes of Health and Genome Canada are today announcing a global collaborative research programme designed to lead to better understanding of human diseases.

Although many genes have been linked to major diseases or conditions such as cancer, heart disease, neurological disorders, diabetes and obesity, research is still needed into why these genes are important and what their role is in the disease. As mice and humans share 99% of their genetic make-up, this international collaborative programme will study the activity of genes in mice, using a process that “knocks out” specific genes. This programme will help researchers unravel the genetic networks underlying disease. The project will cost a total of €56.6m, with the EU’s Research Framework Programme contributing €13m. The information on mutations in the mouse genome generated by the programme will be rapidly accessible to the worldwide scientific community, constituting a significant resource to help translate basic research into improvements in human health.

European Science and Research Commissioner Janez Potocnik welcomed the joint programme, saying “International scientific collaboration is in the interests of us all; pooling knowledge will increase our chance to make discoveries that can benefit human health. There is so much we still don’t know about the effect of genes on the development of our major diseases. Research like this gives hope to many of those suffering serious illnesses and their families.”

Our genetic material is composed of about 28 000 different genes. However, just identifying a gene does not tell much about its potential function in health and disease. To investigate this it is necessary to mutate the gene in a model organism that is closely related to humans. Genetically, the mouse is the model organism of choice for human disease research, as about 99% of human genes are found in the mouse genome and vice versa. In addition, a powerful mutagenesis technology has been developed, that currently can only be applied in the mouse to inactivate a specific gene in a time- and space-dependent manner. This approach allows researchers to unravel very precisely the genetic networks underlying disease.

... more about:
»Canada »Collaborative »Genom »Human »Resource »mutagenesis

Mutations in all the genes of a mammalian genome

The European Commission, US National Institutes of Health (NIH) and Genome Canada will finance the largest collaborative research effort (56.6 m€) worldwide after the Human Genome Project to produce mutations in all the mouse genes, using gene trapping and gene targeting approaches. This project will enable mouse mutants to be generated in any laboratory in a standardised and cost-effective manner, thereby making them available to a much wider biomedical research community than has been possible previously. This mutant resource will be of crucial importance for health research since it will allow scientists to dissect gene functions within a living organism (in vivo) more accurately and to mimic human disease conditions more closely. In doing so, it will also speed up significantly drug developments for the treatment of human diseases.

World-wide collaborative research effort in mouse mutagenesis

This world-wide mouse mutagenesis collaborative effort networks three major initiatives: The EUCOMM project financed by the European Commission with 13m€, the NorCOMM project which received 4.4 m€ from the Canadian government and the Knockout Mouse Project (KOMP) project financed by the US-NIH with 39.2 m€. A steering committee composed of the scientists leading these three research projects and representatives from the funding agencies will coordinate this collaborative effort to ensure complementarity and to avoid overlaps. These leading scientists and funding agencies have agreed to make freely accessible to the scientific community the mutant resources generated in their respective projects, thereby maximising the benefit of each of these projects. Other funding agencies and scientific projects involved in similar mouse mutagenesis programmes in other countries are also encouraged to join in this present effort provided they will agree to the same principle.

EU invests €135 million in mouse functional genomics

The European Union is a major sponsor of mouse functional genomics research. Since 2002, fifteen ongoing European collaborative projects have received a total of €135 million from the EU’s Fifth and Sixth Framework Programmes. They are using the mouse as a model for elucidating gene functions in health and disease. Some of these projects are developing new tools, technologies, and resources that are essential for the success of mouse functional genomics. Other projects are using mouse models to investigate the functions of key genes involved in important biological processes such as hearing, muscle formation, kidney function angiogenesis embryonic stem cell differentiation and the immune system.

Wappelhorst Michael | alfa
Further information:
http://www.ec.europa.eu/research

Further reports about: Canada Collaborative Genom Human Resource mutagenesis

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>