Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sunscreen ingredient to heal sunburn and help prevent skin cancer

08.09.2006
People who suffer from sunburn could soon benefit from a new sunscreen ingredient that actively repairs sunburnt skin and helps prevent the onset of skin cancer, according to research published in the Journal of Investigative Dermatology.

Unlike conventional sunscreen lotions which merely act as a filter for UVA and UVB sunlight, the new ingredient releases an active ingredient which mops up free iron that is released when the skin burns.

This reduces the inflammation and pain that goes with sunburn – which is exacerbated by the iron - and also prevents the build up of harmful sunlight-generated free radicals, which can lead to the development of skin cancers.

The new ingredient is light-responsive and only becomes active when it is exposed to UV radiation in sunlight, avoiding any side-effects that might result from long-term exposure to the active form of the drug.

The researchers are currently testing prototypes of the ingredient in the laboratory using three dimensional human skin cultures, but expect to be trialling the ingredient with volunteers in the next two to three years.

“When skin is exposed to high doses of sunlight, such as when you are sunbathing, a massive amount of free iron is released in skin cells,” said Dr Charareh Pourzand from the University of Bath who is working in collaboration with Dr James Dowden (presently at Nottingham University).

“This free iron can act as catalysts for the generation of more harmful free radicals that cause severe cell damage.

“Many forms of cancer are thought to be the result of reactions between free radicals and DNA, causing mutations that can disrupt the cell cycle and potentially lead to cancer.

“We wanted to find a way of mopping up sunlight-generated free iron that produce harmful radicals during exposure to bright sunlight in order to prevent the unwanted side reactions that can lead to skin damage and ultimately cancer.

“The best way to do this is using chelators, drugs that bind and export iron from the body.

“However, long term use of chelators can be toxic for cells as it starves them of the iron necessary for normal biological processes, for example the red blood cells that transport oxygen around the body need iron to work.”

Additional hurdles in the research were that many chelators are ineffective protectors of cells, and many of them are patented and so cannot be used freely by all researchers.

The researchers had to find chelators which were strong enough to export the excess iron out of cells, but that would not have an adverse effect on other essential cellular processes.

After three years of research, the team has designed two commercially attractive prototypes which are currently in laboratory trials.

The prototypes contain ‘caged’ iron binding sites which release the chelators only in response to high doses of UV light, thus avoiding toxicity to cells.

The new sunscreens containing these components will not only contribute to preventing and repairing skin damage caused by UV light, but will also be more effective and will last longer (up to three hours) after application on the skin than conventional sunscreen lotions.

Skin cancer is one of the most common cancers in the UK and the number of people who get it is increasing. There are over 70,000 new cases of skin cancer diagnosed each year in the UK and many cases are not reported so the real number of cases is probably much higher.

Over 2,000 people die from skin cancer each year in the UK.

Cancer Research UK has recently launched the SunSmart - the UK's national skin cancer prevention campaign. It is advising people to follow the smart advice:
- Spend time in the shade between 11am and 3pm
- Make sure you never burn
- Aim to cover up with a t-shirt, hat and sunglasses
- Remember to take extra care with children
- Then use factor 15+ sunscreen
“UVB sunlight is associated with the hottest part of the day, between 10am and 3pm, when the sunlight is brightest,” said Dr Pourzand who works in the University of Bath’s Department of Pharmacy & Pharmacology.

“UVB affects the outer layer of the skin and is the primary agent responsible for skin blistering and peeling after sunburn.”

“UVA sunlight is typically associated with the cooler parts of hot summer days, before 10am and after 3pm.”

“UVA was once thought to have a minor effect on skin damage, but now it is considered to be a major contributor as it penetrates deeper into the skin than UVB.”

“It is overexposure to UVA that causes the redness and inflammation, or erythema, associated with sunburn.”

“The UVA component of sunlight is dangerous as it acts as an oxidising agent that forms free radicals which trigger chain reactions that potentially lead to DNA damage that can convert healthy skin cells into cancerous ones.”

The original research paper, Caged-Iron Chelators a Novel Approach Towards Protecting Skin Cells Against UV A-Induced Necrotic Cell Death, is available online from the Journal for Investigative Dermatology.

The research was funded by a Wellcome Trust Showcase Award.

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk/news/articles/releases/sunscreen070906.html

Further reports about: Cancer chelators free radicals ingredient sunburn sunlight

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>