Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein splicing upsets the DNA colinearity paradigm

08.09.2006
Understanding medical research problems often relies on the direct, linear relationship between the sequence of a protein and the DNA encoding that protein.

In fact, colinearity of DNA and protein sequences is thought to be a fundamental feature of the universal genetic code. However, a paper published today in Science by a team from the Brussels Branch of the global Ludwig Institute for Cancer Research (LICR) and the Seattle-based Fred Hutchinson Cancer Research Center (FHCRC), shows that a protein can be rearranged so that it is no longer colinear with its encoding DNA.

Genes have stretches of (protein) coding DNA sequences interspersed with stretches of non-coding DNA sequences. The first step in making the protein is the faithful transcription of the entire gene’s sequence into an RNA sequence. The RNA is then ‘spliced’ such that the non-coding sequences are removed and the coding sequences are assembled in a linear fashion to form the template for translation from RNA to protein.

“Until now it was thought that colinearity of DNA and protein sequences was only interrupted by RNA splicing,” says LICR's Dr. Benoit Van den Eynde, the study's senior author. "This new study shows that protein splicing also occurs, and may even result in protein fragments, or peptides, being spliced together in the order opposite to that which occurs in the parental protein.” According to Dr. Van den Eynde, this novel phenomenon occurs during the physiological function of ‘antigen processing,’ which produces antigenic peptides; the ‘red flags’ that mark cells for destruction by the immune system.

... more about:
»Antigen »DNA »DNA sequence »RNA »colinearity

The immune system attacks ‘foreign’ cells - be they tumor cells, virally infected, or donated by another person - when T lymphocytes recognize antigenic peptides displayed on the cell surface. The antigens are created by ‘proteasomes,’ components of the cell machinery that cut foreign proteins into peptides that are then displayed on the cell surface for recognition and destruction by CD8+ T lymphocytes. However, the Belgium/USA team has found that proteasomes can also splice the peptide fragments together in a reverse order to that encoded by the protein’s DNA sequence template. This takes the possible number of antigens from any one protein into potentially thousands of sequence configurations.

The sequence of the first human cancer-specific antigen, which was identified at the LICR Brussels Branch, has allowed the development of antigen-specific cancer vaccines that are in clinical trials around the world. This study describes a mechanism that significantly extends the number of antigenic peptides that can be produced from a single protein, and therefore widens the applicability of peptide vaccines against cancer and infectious diseases.

Sarah White | alfa
Further information:
http://www.licr.org

Further reports about: Antigen DNA DNA sequence RNA colinearity

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>