Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single genetic defect produces specific cognitive deficit in mice

07.09.2006
Researchers have found that, in mice, producing a single genetic defect in a molecule that "reloads" neurons to trigger one another using the neurotransmitter acetylcholine impairs the mice's ability to recognize objects or other mice.

The researchers, Marco Prado, Marc Caron, Vania Prado, and their colleagues, said their findings reveal a critical role in central nervous system (CNS) function for the component of the reloading machinery, called an acetylcholine transporter, that they knocked out.

They also said their findings suggest that the mouse model will be useful in understanding how defects in neurons that use acetylcholine to trigger one another contribute to cognitive decline in such disorders as Alzheimer's disease (AD) and aging. The researchers published their finding in the September 7, 2006, issue of the journal Neuron, published by Cell Press.

To explore the role of the acetylcholine transporter, the researchers genetically modified mice to either completely lack the transporter gene or to have reduced levels of it. Such transporters normally retrieve acetylcholine that one neuron has used to trigger another and transport it to storage sacs called vesicles that are the reservoir for neurotransmitter for subsequent use. The researchers found that such transporter-deficient mice were less able to fill such vesicles with acetylcholine.

In behavioral tests, the researchers found that the mice with lower levels of the transporter were less able to learn to hang on to a rotating rod than normal mice. Mice completely lacking the transporter were totally unable to manage the task because they lacked physical endurance. Thus, wrote the researchers, those mice might be useful models for studying the effects of reduced acetylcholine release in certain neuromuscular disorders.

Both normal mice and those with reduced transporter were equally able to learn and remember to avoid a mild shock. However, the reduced-transporter mice showed deficits in object recognition--significantly less able to remember that they had encountered specific-shaped plastic blocks before. The altered mice also showed less memory of "intruder" mice placed in their cages--evidence of reduced social recognition.

Significantly, the researchers found that when they used a drug to enhance acetylcholine in the transporter-deficient mice, those mice showed improved performance on social recognition tests, implying that the deficit in social recognition was caused by a reduction in "cholinergic tone."

Prado, Caron, and their colleagues concluded that "Our observations support the notion that reduced cholinergic tone in AD mouse models can indeed cause deficits in social memory. However, based on somewhat similar impairments found in the object and social recognition tasks, it is possible that mild cholinergic deficits may cause a more general memory deficit for recognizing previously learned complex cues, whether social or not. Future detailed investigations will be necessary to further define the specific type of cognitive processing affected by cholinergic deficits in these mutants.

"Such studies in mouse models of reduced cholinergic tone may be particularly informative for understanding the contribution of cholinergic decline to specific behavioral alterations observed in certain pathologies of the CNS and may even be helpful in understanding physiological aging," wrote the researchers.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com
http://www.neuron.org

Further reports about: Neuron Recognition acetylcholine cholinergic cognitive deficit

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>