Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clue found to Epstein-Barr virus' ability to form and sustain tumors

07.09.2006
Researchers at the University of Wisconsin School of Medicine and Public Health (SMPH) have found a viral target that opens the door for the development of drugs to destroy tumors caused by Epstein-Barr virus (EBV).

The finding, published in the Sept. 4 Proceedings of the National Academy of Sciences Online, identifies the activity of a critical segment of a viral protein required to sustain EBV-related tumors. The researchers found that when they blocked this activity, the virus life cycle was broken.

Often linked to infectious mononucleosis, EBV also causes cancers that kill 100,000 people around the world each year. The virus, which infects the immune system's B cells and causes them to grow, is directly responsible for Burkitt's lymphoma, an often-fatal malignancy affecting thousands of African children annually. It is also causally associated with at least four other kinds of human cancers, including Hodgkin's lymphomas, lymphomas in AIDS patients and organ transplant recipients as well as nasopharyngeal carcinomas.

The SMPH researchers, based at the McArdle Laboratory for Cancer Research, focused on a viral protein they had previously found to be necessary to keeping Burkitt's lymphoma cells alive and growing in culture. The protein, called Epstein-Barr nuclear antigen 1 (EBNA-1), is the only protein the virus makes in all EBV-positive tumors.

... more about:
»Cellular »EBNA-1 »EBV »Epstein-Barr »Sugden »amino acid »lymphoma

"We've been trying to identify specific functions of EBNA-1 that we could target therapeutically," says Bill Sugden, professor of oncology who has studied EBV for more than 30 years. "Our goal is to develop a successful anti-viral, anti-tumor therapy for all EBV-positive tumors."

In the current study, Sugden and his colleague of 20 years, Wolfgang Hammerschmidt, now based at the German National Research Center for Environment and Health, designed genetic experiments to mutate various segments of the 640 amino acids that make up the EBNA-1 protein, which is one of about 100 proteins EBV encodes. They then infected human B cells with EBVs carrying various mutant EBNA-1s.

The analysis showed that one 25-amino acid segment within EBNA-1 was responsible for the regulation of viral gene transcription, the first step in the process by which a gene's coded information is converted first into RNA and then into protein.

Mutating the unique segment of amino acids prevented EBNA-1 from transforming resting B cells into proliferating cells.

Under normal conditions, a cellular protein binds this 25-amino acid segment of EBNA-1, allowing transcription of viral and cellular genes regulated by EBNA-1 to occur. Hammerschmidt and Sugden are now trying to identify the cellular protein.

"If we can identify this protein, it will be easier for us to develop assays to screen for small molecules that will compete with the protein in binding to EBNA-1," Sugden says. "By preventing the cellular protein from binding with the segment, EBNA-1 will not be able to carry out its function and the tumor cells it sustains will die."

The goal, which Sugden expects is achievable, is to end up with a drug that kills only EBV-positive tumor cells and doesn't harm other tissues in the body.

Dian Land | EurekAlert!
Further information:
http://www.wisc.edu

Further reports about: Cellular EBNA-1 EBV Epstein-Barr Sugden amino acid lymphoma

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>