Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clue found to Epstein-Barr virus' ability to form and sustain tumors

07.09.2006
Researchers at the University of Wisconsin School of Medicine and Public Health (SMPH) have found a viral target that opens the door for the development of drugs to destroy tumors caused by Epstein-Barr virus (EBV).

The finding, published in the Sept. 4 Proceedings of the National Academy of Sciences Online, identifies the activity of a critical segment of a viral protein required to sustain EBV-related tumors. The researchers found that when they blocked this activity, the virus life cycle was broken.

Often linked to infectious mononucleosis, EBV also causes cancers that kill 100,000 people around the world each year. The virus, which infects the immune system's B cells and causes them to grow, is directly responsible for Burkitt's lymphoma, an often-fatal malignancy affecting thousands of African children annually. It is also causally associated with at least four other kinds of human cancers, including Hodgkin's lymphomas, lymphomas in AIDS patients and organ transplant recipients as well as nasopharyngeal carcinomas.

The SMPH researchers, based at the McArdle Laboratory for Cancer Research, focused on a viral protein they had previously found to be necessary to keeping Burkitt's lymphoma cells alive and growing in culture. The protein, called Epstein-Barr nuclear antigen 1 (EBNA-1), is the only protein the virus makes in all EBV-positive tumors.

... more about:
»Cellular »EBNA-1 »EBV »Epstein-Barr »Sugden »amino acid »lymphoma

"We've been trying to identify specific functions of EBNA-1 that we could target therapeutically," says Bill Sugden, professor of oncology who has studied EBV for more than 30 years. "Our goal is to develop a successful anti-viral, anti-tumor therapy for all EBV-positive tumors."

In the current study, Sugden and his colleague of 20 years, Wolfgang Hammerschmidt, now based at the German National Research Center for Environment and Health, designed genetic experiments to mutate various segments of the 640 amino acids that make up the EBNA-1 protein, which is one of about 100 proteins EBV encodes. They then infected human B cells with EBVs carrying various mutant EBNA-1s.

The analysis showed that one 25-amino acid segment within EBNA-1 was responsible for the regulation of viral gene transcription, the first step in the process by which a gene's coded information is converted first into RNA and then into protein.

Mutating the unique segment of amino acids prevented EBNA-1 from transforming resting B cells into proliferating cells.

Under normal conditions, a cellular protein binds this 25-amino acid segment of EBNA-1, allowing transcription of viral and cellular genes regulated by EBNA-1 to occur. Hammerschmidt and Sugden are now trying to identify the cellular protein.

"If we can identify this protein, it will be easier for us to develop assays to screen for small molecules that will compete with the protein in binding to EBNA-1," Sugden says. "By preventing the cellular protein from binding with the segment, EBNA-1 will not be able to carry out its function and the tumor cells it sustains will die."

The goal, which Sugden expects is achievable, is to end up with a drug that kills only EBV-positive tumor cells and doesn't harm other tissues in the body.

Dian Land | EurekAlert!
Further information:
http://www.wisc.edu

Further reports about: Cellular EBNA-1 EBV Epstein-Barr Sugden amino acid lymphoma

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>