Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clue found to Epstein-Barr virus' ability to form and sustain tumors

07.09.2006
Researchers at the University of Wisconsin School of Medicine and Public Health (SMPH) have found a viral target that opens the door for the development of drugs to destroy tumors caused by Epstein-Barr virus (EBV).

The finding, published in the Sept. 4 Proceedings of the National Academy of Sciences Online, identifies the activity of a critical segment of a viral protein required to sustain EBV-related tumors. The researchers found that when they blocked this activity, the virus life cycle was broken.

Often linked to infectious mononucleosis, EBV also causes cancers that kill 100,000 people around the world each year. The virus, which infects the immune system's B cells and causes them to grow, is directly responsible for Burkitt's lymphoma, an often-fatal malignancy affecting thousands of African children annually. It is also causally associated with at least four other kinds of human cancers, including Hodgkin's lymphomas, lymphomas in AIDS patients and organ transplant recipients as well as nasopharyngeal carcinomas.

The SMPH researchers, based at the McArdle Laboratory for Cancer Research, focused on a viral protein they had previously found to be necessary to keeping Burkitt's lymphoma cells alive and growing in culture. The protein, called Epstein-Barr nuclear antigen 1 (EBNA-1), is the only protein the virus makes in all EBV-positive tumors.

... more about:
»Cellular »EBNA-1 »EBV »Epstein-Barr »Sugden »amino acid »lymphoma

"We've been trying to identify specific functions of EBNA-1 that we could target therapeutically," says Bill Sugden, professor of oncology who has studied EBV for more than 30 years. "Our goal is to develop a successful anti-viral, anti-tumor therapy for all EBV-positive tumors."

In the current study, Sugden and his colleague of 20 years, Wolfgang Hammerschmidt, now based at the German National Research Center for Environment and Health, designed genetic experiments to mutate various segments of the 640 amino acids that make up the EBNA-1 protein, which is one of about 100 proteins EBV encodes. They then infected human B cells with EBVs carrying various mutant EBNA-1s.

The analysis showed that one 25-amino acid segment within EBNA-1 was responsible for the regulation of viral gene transcription, the first step in the process by which a gene's coded information is converted first into RNA and then into protein.

Mutating the unique segment of amino acids prevented EBNA-1 from transforming resting B cells into proliferating cells.

Under normal conditions, a cellular protein binds this 25-amino acid segment of EBNA-1, allowing transcription of viral and cellular genes regulated by EBNA-1 to occur. Hammerschmidt and Sugden are now trying to identify the cellular protein.

"If we can identify this protein, it will be easier for us to develop assays to screen for small molecules that will compete with the protein in binding to EBNA-1," Sugden says. "By preventing the cellular protein from binding with the segment, EBNA-1 will not be able to carry out its function and the tumor cells it sustains will die."

The goal, which Sugden expects is achievable, is to end up with a drug that kills only EBV-positive tumor cells and doesn't harm other tissues in the body.

Dian Land | EurekAlert!
Further information:
http://www.wisc.edu

Further reports about: Cellular EBNA-1 EBV Epstein-Barr Sugden amino acid lymphoma

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>