Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clue found to Epstein-Barr virus' ability to form and sustain tumors

07.09.2006
Researchers at the University of Wisconsin School of Medicine and Public Health (SMPH) have found a viral target that opens the door for the development of drugs to destroy tumors caused by Epstein-Barr virus (EBV).

The finding, published in the Sept. 4 Proceedings of the National Academy of Sciences Online, identifies the activity of a critical segment of a viral protein required to sustain EBV-related tumors. The researchers found that when they blocked this activity, the virus life cycle was broken.

Often linked to infectious mononucleosis, EBV also causes cancers that kill 100,000 people around the world each year. The virus, which infects the immune system's B cells and causes them to grow, is directly responsible for Burkitt's lymphoma, an often-fatal malignancy affecting thousands of African children annually. It is also causally associated with at least four other kinds of human cancers, including Hodgkin's lymphomas, lymphomas in AIDS patients and organ transplant recipients as well as nasopharyngeal carcinomas.

The SMPH researchers, based at the McArdle Laboratory for Cancer Research, focused on a viral protein they had previously found to be necessary to keeping Burkitt's lymphoma cells alive and growing in culture. The protein, called Epstein-Barr nuclear antigen 1 (EBNA-1), is the only protein the virus makes in all EBV-positive tumors.

... more about:
»Cellular »EBNA-1 »EBV »Epstein-Barr »Sugden »amino acid »lymphoma

"We've been trying to identify specific functions of EBNA-1 that we could target therapeutically," says Bill Sugden, professor of oncology who has studied EBV for more than 30 years. "Our goal is to develop a successful anti-viral, anti-tumor therapy for all EBV-positive tumors."

In the current study, Sugden and his colleague of 20 years, Wolfgang Hammerschmidt, now based at the German National Research Center for Environment and Health, designed genetic experiments to mutate various segments of the 640 amino acids that make up the EBNA-1 protein, which is one of about 100 proteins EBV encodes. They then infected human B cells with EBVs carrying various mutant EBNA-1s.

The analysis showed that one 25-amino acid segment within EBNA-1 was responsible for the regulation of viral gene transcription, the first step in the process by which a gene's coded information is converted first into RNA and then into protein.

Mutating the unique segment of amino acids prevented EBNA-1 from transforming resting B cells into proliferating cells.

Under normal conditions, a cellular protein binds this 25-amino acid segment of EBNA-1, allowing transcription of viral and cellular genes regulated by EBNA-1 to occur. Hammerschmidt and Sugden are now trying to identify the cellular protein.

"If we can identify this protein, it will be easier for us to develop assays to screen for small molecules that will compete with the protein in binding to EBNA-1," Sugden says. "By preventing the cellular protein from binding with the segment, EBNA-1 will not be able to carry out its function and the tumor cells it sustains will die."

The goal, which Sugden expects is achievable, is to end up with a drug that kills only EBV-positive tumor cells and doesn't harm other tissues in the body.

Dian Land | EurekAlert!
Further information:
http://www.wisc.edu

Further reports about: Cellular EBNA-1 EBV Epstein-Barr Sugden amino acid lymphoma

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>